|
|||||
Multinomial Logistic Regression: Usage and Application in Risk AnalysisKeywordsBinary variable, log odds ratio, Logistic regression model, (log) Likelihood ratio statistic, Wald statistic, model fit, quantitative risk analysis AbstractThe objective of the article was to explore the usage of multinomial logistic regression (MLR) in risk analysis. In this regard, performing MLR on risk analysis data corrected for the non-linear nature of binary response and did address the violation of equal variance and normality assumptions. Additionally, use of maximum likelihood (-2log) estimation provided a means of working with binary response data. The relationship of independent and dependent variables was also addressed. The data used included a cohort of hundred risk analyst of a historically black South African University. In this analysis, the findings revealed that the probability of the model chi-square (17.142) was 0.005, less than the level of significance of 0.05 (i.e. p<0.05). Suggesting that there was a statistically significant relationship between the independent variable-risk planning (Rp) and the dependent variable-control mechanism (control mecs) (p<0.05). Also, there was a statistically significant relationship between key risks assigned (KSA) and time spent on risk mitigation. For each unit increase in confidence in control mecs, the odds of being in the group of survey respondents who thought institution spend too little time on Rp decreased by 74.7%. Moreover, the findings revealed that survey respondents who had less confidence in control mecs were less likely to be in the group of survey respondents who thought institution spent about the right amount of time on risk planning. (top)
|