ISSN 1842-4562
Member of DOAJ

An Application of Mindsadbesd Regression


Ciprian Costin Popescu
Sudradjat Supian


Keywords

mindsadbesd regression, application, fuzzy models


Table of Contents

The minsadbesd approach
Example
Conclusions
References


Abstract

In this work, an application of the modified minsadbed (minimizing sum of absolute differences between deviations) approach for a fuzzy environment is given. This type of regression was used for a statistical model with two real parameters and experimental observations which implies real numbers (see Arthanary and Dodge). We develop minsadbed to minsadbesd (minimizing sum of absolute differences between squared deviations) which is more suitable for our model on vague sets. The models on fuzzy sets are described by Ming, Friedman and Kandel; these authors estimate the parameters pre-eminently using least squares. We make an attempt for another method, as in the following writing.


The minsadbesd approach

Consider the model composed by observations which are put in the forms , where , , , are real functions defined on closed interval (see Goetschel&Voxman, Ming, Friedman and Kandel). The model is approximately described by a regression line given by the equation , of form , where const., const.. Thus we have the initial relation . For the inputs the distance between an observed value and the corresponding theoretical value is:

if

and

if  .

Case 1: .

In this case we solve the problem under the assumption that .

The minsadbesd algorithm lead us to solve the problem

  (1.1)

or


  (1.2)

For all , , we make the substitutions:

, ,

, .

Thus (1.2) is equivalent to

  (1.3)

or

  (1.4)

where

,

.

Let .  For function , we have

The sign of the discriminant is unknown. We have four cases which depends on signs of ; consequently, the graph of has one of the forms shown in Fig. 1-4.

Case 1.1.

The "easy" case appears when all the discriminants are negative, namely. In this situation the functions have the forms shown in Fig. 3 or Fig. 4.

The problem (1.4) is equivalent to

(1.5)

where ( this writing means that some of  the terms are positively and the others are negatively, depending on the concrete signs of

The unique minimizing point for the function (see also Fig. 5) is

Case 1.2.

have random signs.

The graph of the continuous function is composed from small pieces which are parts from the functions given by the equations are real numbers with general form (see Fig. 6). We consider the following sets:

Thus the feasible set is which is relatively easy to settle, as in Section 2.

Case 2: .

  (1.6)

gives


  (1.7)

The problem (1.7) is equivalent with

  (1.8)

which becomes

  (1.9)

if

.

We denote .  For function , we have

Case 2.1.

First, we consider the case .

Thus the graph of has one of the two forms shown in Fig. 3 and Fig. 4.

Then the problem (1.9) is equivalent with

  (1.10)

where

The unique minimizing point for function is

The approach is the same as in first case but with other coefficients.

In both situation, is obtained from the condition that the line pass through the initial fixed point.

Case 2.2.

All the comments stored in case 1.2 keeps their validity. 

For we have   and (1.4) is equivalent with

  (1.11)

Figure 1. The graph of (green) if and

Figure 2. The graph of  (green)  if and

Figure 3. The graph  of  if and

Figure 4. The graph  of  if and

Figure 5. The graphs of the functions, when ; the surface bounded by the graph of   is colored in gray

Figure 6. The graph of the function   when have random signs


Example

We test the method for fixed point and the fuzzy data:

Then

1

2

3

1

9.66

32.66

16.50

15.5

2

0.58

108.66

21.00

20.00

3

43.33

55.33

46.66

36.00

and

Case 1: We search the minimizing points for the function

Accordingly to the facts proved in the preceding chapters, namely Section 1, case 1.2, the set of feasible points is ( notice: for this example we obtain

Case 2: We search the minimizing point for and the minimum is attained in on we conclude that the estimators for are the real numbers where and depends by the desired threshold of error. If then is a better estimator.

At last, we have and for all and the final solution for this problem is


Conclusions

From the preceding theoretical facts and numerical example we obtain the following conclusions:

1) For , , we evaluate and .

If thus the solution is .

If thus the solution is .

2) For , or , it is necessary to make small supplementary calculations which implies the special properties of the functions


References

1.   Arthanary T. S., Yadolah Dodge, Mathematical Programming in Statistics, John Wiley and Sons, New York , 1980

2.   Wu Cong-Xin and Ma Ming: Embedding problem of fuzzy number space: Part I, Fuzzy Sets and Systems 44, 1991, p. 33-38

3.   Wu Cong-Xin and Ma Ming: Embedding problem of fuzzy number space: Part III, Fuzzy Sets and Systems 46, 1992, p. 281-286

4.   P. Diamond and P. Kloeden, Metric spaces of fuzzy sets, Fuzzy Sets and Systems 35, 1990, p. 241-249

5.   P. Diamond, Fuzzy least squares, Inform. Sci. 46, 1988, p. 141-157

6.   P. Diamond and P. Kloeden, Metric spaces of fuzzy sets, Corrigendum, Fuzzy Sets and Systems 45, 1992, p. 123

7.   R. Goetschel, W. Voxman, Elementary Calculus, Fuzzy Sets and Systems 18, 1986, p. 31-43

8.   I.M. Hammerbacher and R. R. Yager, Predicting television revenues using fuzzy subsets, TIMS Stud. Management Sci. 20, 1984, p. 469-477

9.   A. Katsaras and D. B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, J. Math. Anal. Appl. 58, 1977, p. 135-146

10.  Ma Ming, M. Friedman, A. Kandel, General fuzzy least squares, Fuzzy Sets and Systems 88, 1997, p. 107-118

11.  C. V. Negoita and D. A. Ralescu, Applications of Fuzzy Sets to Systems Analysis, Wiley, New York , 1975

12.  H. Prade, Operations research with fuzzy data, in: P. P. Wang and S. K. Chang, Eds., "Fuzzy sets: Theory and Application to Policy Analysis and Information Systems", plenum, New York , 1980, p. 115-169

13.  M. L. Puri and D. A. Ralescu, Differentials for fuzzy functions, J. Math. Anal. Appl. 91, 1983, p. 552-558

14.  H. Tanaka, H. Isibuchi and S. Yoshikawa , Exponential possibility regression analysis, Fuzzy Sets and Systems 69, 1995, p. 305-318

15.  H. Tanaka, S. Uejima and K. Asai, Linear regression analysis with fuzzy model, IEEE Trans. Systems Man Cybernet SMC-12, 1982, p. 903-907

16.  H. J. Zimmermann, Fuzzy programming and linear programming with several objective functions, Fuzzy Sets and Systems 1, 1978, p. 45-55

17.  R. R. Yager, Fuzzy prediction based upon regression models, Inform. Sci. 26, 1982, p. 45-63