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Abstract: We consider several estimators for the change point in a sequence of independent 
observations. These are defined as the maximizing points of usually used statistics for 
nonparametric change point detection problems. Our investigations focus on the non 
asymptotic behaviour of the proposed estimators for sample sizes commonly observed in 
practice. We conducted a broad Monte Carlo study to compare these change point estimators, 
also investigating their properties and potential practical applications. 
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1. Introduction 
 
Since the middle of the twentieth century, the retrospective change point problem 

has been extensively addressed in statistics and engineering literature (e.g., Chernoff and 
Zacks, 1964; James et al., 1987; Csorgo and Horvath, 1988; Gombay and Horvath, 1994, 
Gurevich and Vexler, 2005, 2010; Gurevich, 2006, 2007, 2009). This problem is directly 
connected to process capability and is important in biostatistics, education, economics and 
other fields (e.g., see Page, 1954, 1955; Sen and Srivastava, 1975). Formally, the problem is 
that of hypothesis testing:  

0H , the null: 121 ~,...,, FXXX n   versus              (1) 

1H , the alternative: 1~ FX i , 2~X Fj , 1,...,1  i , nj ,..., ,             

where nXXX ,...,, 21  is a sample of independent observations, 1F  and 2F  are 

distribution functions with corresponding density functions 1f  and 2f , respectively. The 
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distribution functions 1F  and 2F  are not necessary known. The unknown parameter  , 

n2  is called a change point. In accordance with the statistical literature, the problem 

(1) has been investigated in parametric and nonparametric forms, depending on 

assumptions made on the distribution functions 1F  and 2F . In the parametric case of (1), it 

is assumed that the distribution functions 1F  and 2F  have known forms that can contain 

certain unknown parameters (e.g., James et al., 1987; Gombay and Horvath, 1994; 

Gurevich, 2007). In the nonparametric case of (1), the functions 1F , 2F  are assumed to be 

completely unknown (e.g., Wolfe and Schechtman, 1984; Ferger, 1994; Gombay, 2000, 
2001; Gurevich, 2006).  

The parametric case of testing the change point problem (1) has been dealt with 
extensively in both the theoretical and applied literature (e.g., Chernoff and Zacks, 1964; 
Kander and Zacks, 1966; Sen and Srivastava, 1975; James et al., 1987; Gombay and 
Horvath, 1994; Gurevich and Vexler, 2005; Gurevich, 2007). Chernoff and Zacks (1964) 

considered the problem (1) based on normally distributed observations with  1,01 NF  , 

 1,2 NF  , where 0  and 0   are unknown. Kander and Zacks (1966) extended the 

Chernoff and Zacks's results to a case based on data from the one-parameter exponential 
family. Sen and Srivastava (1975) used the maximum likelihood technique to present a test-
statistic. James et al. (1987) proposed, in the context of (1), decision rules based on 
likelihood ratios and recursive residuals. This change point literature concluded that there is 

no a globally (with respect to values of  , under 1H ) preferable test for (1). It turned out that 

the Chernoff and Zacks’ test has a larger power than that of tests based on the likelihood 
ratio or recursive residuals when   is around 2/n , but this property  is reversed if the 

change point   is close to the edges, i.e., when n  or 2 . 

When the problem (1) is stated nonparametrically, the common components of 
change point detection policies have been proposed to be based on signs and/or ranks 
and/or U -statistics (e.g., Wolfe and Schechtman, 1984; Ferger, 1994; Gombay, 2000, 
2001; Gurevich, 2006). Sen and Srivastava (1975) focused on the problem (1) with the 

unknown distributions  xF1 , )()( 12  xFxF , 0 . The authors suggested to reject 

0H , for large values of the statistic 
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Mann-Whitney statistic for two samples of size 1k  and 1 kn . (Sen and Srivastava 

(1975) did not study analytical properties of the statistic (2).) Setting the problem (1) in a 
similar manner to Sen and Srivastava (1975), Pettitt (1979) used the statistic 
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to propose a change point detection policy. Wolfe and Schechtman (1984) showed 
that this statistic can be presented as 
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Csorgo and Horvath (1988) have modified very slightly the statistic (2) and 

evaluated asymptotically  n  the type I error of the corresponding test. Ferger (1994) 

and Gombay (2001,2002) studied the asymptotic behaviour of U-statistics, in particular, the 
asymptotic properties of the test based on statistic (3). Wolfe and Schechtman (1984), 
Gurevich (2006, 2009) as well as Gurevich and Vexler (2010) compared the powers of 
various nonparametric retrospective tests for the problem (1). Their study confirmed that the 
tests based on statistics (2) and (3) are usually very efficient, especially for stochastically 
ordered alternatives. Moreover, It turned out that, as in the parametric case, there is no a 
globally preferable test. For 2/n   it seems that the test based on the statistic (3) is 

preferable; and for   that is close to edges, the test based on the statistic (2) is preferable. 

Note that, under 0H  the distribution of the statistics (2) and (3) does not depend on the 

distribution of the observations. That is, the tests based on these statistics are exact and 
corresponding critical values can be tabulated for fix sample sizes and any desirable 

significance level. When the two-sided alternative )()( 12  xFxF , 0  is assumed, the 

absolute values under the operator max in the statistics (2) and (3) should be considered 
(e.g., Gurevich and Vexler, 2010). Thus, the tests for the two-sided alternative are based on 
the statistics  
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While the change point literature mainly relates on testing the hypotheses (1), 

rather scant work has been done on the problem of estimation of the change point  . 

Gurevich and Vexler (2005, 2010) showed that, in general, a process of estimation of the 
change point parameter   should be started if needed, provided that just the null 

hypothesis of (1) is rejected. When 0H  is rejected, the issue to estimate the unknown 

parameter   can be stated. Borovkov (1999) as well as Gurevich and Vexler (2005) 

investigated different estimators of the change point parameter   in a parametric 

framework. Ferger (2001) studied the behaviour of change point estimators in a 
nonparametric framework under the null hypothesis. Theoretical investigations of the change 
point estimators need substantial mathematical details and usually are restricted to the 
asymptotic analysis when  , n  (e.g. Ferger, 2001 and his references).  

In this article we propose four nonparametric change point estimators in the 
context of the problem (1) with stochastically ordered alternatives. That is, we consider the 

problem (1), where the functions 1F  and 2F  are completely unknown but the observations 

after the change are assumed to be stochastically larger/smaller than that before the 
change. We focus on the non asymptotic behaviour of the proposed estimators and present 
a broad Monte Carlo study investigating their properties and potential practical 
applications. The rest of the paper is organized as follows. Section 2 gives a short 
background in change point estimation and presents four proposed estimators of  . Section 

3 displays a Monte Carlo study. Finally, we state our conclusions in Section 4. 
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2. The proposed change point estimators  
 
Let nXXX ,...,, 21   be independent random observations. We consider the 

hypotheses (1) where unknown distribution functions 1F  and 2F  such that for all x , 

)()( 12 xFxF   or )()( 12 xFxF   (that is, we assume after a possible change the observations 

are stochastically larger or smaller than before the change). The analysis of change point 
estimators in a nonparametric framework has been of increasing interest in the last two 
decades. Commonly, the results for estimators of   are concerned with the case of an actual 

change ( n2 ) and are based on theoretical studies regarding the asymptotic (  , 

n ) behaviour of their distributions. Since in many actual applications the most 

commonly used sample sizes are small or average, the practical implementation of such 
results is not straightforward. Gurevich and Vexler (2005) presented some Monte Carlo 
experiments regarding the non asymptotic behavior of the maximum likelihood change point 
estimators in the parametric framework, i.e., when the problem (1) is stated in the 
parametric form.   

Here we propose the following four estimators of   in a nonparametric framework. 

These maximum likelihood type estimators are based on the relevant nonparametric statistics 
D , K , DD , KK  that have been suggested for corresponding change point detection 
problems.  
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Theoretical evaluations of distribution of the proposed estimators require 

complicated computations that are beyond the scope of this article. In Section 3 we 

present Monte Carlo results to illustrate the non asymptotic behaviour of the estimators D̂ , 

K̂ , DD̂ , KK̂  as well as their comparisons and the practical suitability.  

 

3. Monte Carlo Study  
 
To study the behavior of the change point estimators (6)-(9), we conducted the 

following experiments. For each distribution set with different sample sizes, we generated 
50,000 times corresponding data. Tables 1;2;3 presents the Monte Carlo means and 

standard deviations of the estimators D̂ , K̂ , DD̂ , KK̂ , when samples of X's were drown 

from  2
1 ,NormF  ,  2

2 ,  NormF ; Unif(0,1)1 F ,  Unif(2F ; 

 2
1 ,LogNormF  ,  2

2 ,  LogNormF , respectively, for different values of 

 , sample sizes n  and values of the change point parameter  . To explain the results of 

these experiments we have also evaluated the simulated powers of the tests RD , RK , 
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RDD , RKK , based on the statistics (2), (3), (4), (5). That is, the test RD  rejects the null 

hypothesis 0H  if DCD  , the tests RK , RDD , RKK  reject 0H  if KCK  , DDCDD  , 

KKCKK  , respectively, where DC , KC , DDC , KKC  are test thresholds. (The tests RD  and 

RK  are proposed for the situations where the observations after the possible change are 
suspected to be stochastically larger than that before the change. For the situations where 
the observations after the possible change are suspected to be stochastically smaller, the 

similar tests that reject 0H   for small values of the statistics D  and K  should be 

considered.) The Monte Carlo powers of the tests RD , RK , RDD , RKK  were evaluated at 
the level of significance 0.05 that was fixed experimentally by choosing special values of the 

thresholds DC , KC , DDC , KKC . (Under the null hypothesis of (1), the baseline distribution 

functions of the nonparametric test statistics D , K , DD , KK do not depend on data 
distributions, only tables of critical values of the tests are required for their implementation.) 
Note also that distributions of all four considered statistics do not depend on the parameters 
  and  . Therefore, without loss of generality we utilized 0  and 1 . The power 

functions of the tests RD , RK , RDD , RKK  as functions of   are symmetric around the 

middle points 2/1 n . Moreover, the powers of the tests RDD and RKK do not depend 

on a sign of  , for all fixed  . 
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Table1. The Monte Carlo powers (at 05.0 ) of the tests RD , RK , RDD , RKK , and the 

Monte Carlo means and standard deviations (Std) of the estimators D̂ , K̂ , DD̂ , KK̂ , 

when  1,01 NormF  ,  1,2 NormF  , for different sample sizes n  and values of   and  . 

Observations with the subscript 1  are the last observations before the change. 

 
n    1  Power 

of  

RD  

Power 
of  

RK  

Power 
of  

RDD  

Power 
of  

RKK  

Mean (Std) 
of  

1ˆ D  

Mean (Std) 
of 

 1ˆ K  

Mean (Std) 
of 

 1ˆ DD  

Mean (Std) 
of 

 1ˆ KK  

 0.8 10 0.388 0.429 0.264 0.311 10.0(4.3) 9.9(3.0) 9.9(4.6) 9.9(3.0) 
  5 0.291 0.258 0.177 0.160 7.5(4.9) 7.7(3.9) 8.1(5.3) 7.8(3.9) 
  3 0.186 0.135 0.105 0.079 7.0(5.6) 7.6(4.6) 8.2(5.9) 7.6(4.6) 
 1 10 0.526 0.574 0.387 0.450 10.0(3.6) 9.9(2.5) 10.0(3.8) 9.9(2.5) 

20  5 0.396 0.354 0.262 0.227 7.0(4.4) 7.4(3.4) 7.5(4.8) 7.4(3.4) 
  3 0.250 0.160 0.141 0.093 6.4(5.2) 7.1(4.3) 7.4(5.7) 7.1(4.3) 
 1.2 10 0.661 0.717 0.524 0.603 10.0(3.0) 9.9(2.0) 10.0(3.2) 9.6(2.0) 
  5 0.513 0.458 0.359 0.312 6.6(3.8) 7.1(3.1) 7.0(4.1) 7.1(3.0) 
  3 0.326 0.194 0.189 0.111 5.9(4.8) 6.8(4.1) 6.7(5.3) 6.8(4.1) 

 0.8 20 0.617 0.689 0.497 0.575 20.0(7.1) 19.9(4.3) 20.0(7.5) 19.9(4.4) 
  10 0.485 0.461 0.368 0.325 13.4(8.6) 14.4(6.4) 14.2(9.4) 14.4(6.4) 
  5 0.284 0.172 0.181 0.101 11.9(11.1) 14.1(9.0) 14.0(12.1) 14.0(9.0) 
 1 20 0.798 0.850 0.704 0.770 20.0(5.4) 20.0(3.3) 20.0(5.6) 20.0(3.3) 

40  10 0.660 0.627 0.539 0.491 12.4(6.9) 13.6(5.4) 12.7(7.5) 13.6(5.4) 
  5 0.396 0.224 0.265 0.132 10.3(9.7) 13.0(8.3) 11.9(10.9) 13.1(8.3) 
 1.2 20 0.916 0.944 0.856 0.902 20.0(4.0) 20.0(2.6) 20.0(4.2) 20.0(2.6) 
  10 0.806 0.785 0.708 0.657 11.6(5.4) 13.0(4.6) 11.8(5.8) 13.0(4.6) 
  5 0.526 0.281 0.374 0.163 9.1(8.4) 12.2(7.6) 10.2(9.4) 12.1(7.7) 

 0.8 35 0.838 0.897 0.753 0.834 35.0(9.3) 35.0(5.4) 35.0(9.7) 35.0(5.4) 
  50 0.749 0.778 0.645 0.665 47.2(11.1) 45.4(8.0) 46.9(11.8) 45.3(8.0) 
  60 0.507 0.357 0.378 0.225 52.7(15.9) 47.9(13.3) 50.6(17.9) 47.9(13.3) 
 1 35 0.956 0.979 0.922 0.956 35.0(6.3) 35.0(3.9) 35.0(6.4) 35.0(3.9) 

70  50 0.903 0.924 0.849 0.861 48.4(7.7) 46.4(6.3) 48.2(8.0) 46.4(6.3) 
  60 0.689 0.514 0.565 0.346 55.3(12.4) 49.9(11.7) 54.3(14.0) 49.9(11.7) 
 1.2 35 0.993 0.997 0.985 0.993 35.0(4.4) 35.0(2.9) 35.0(4.3) 35.0(2.9) 
  50 0.978 0.982 0.953 0.960 49.0(5.3) 47.2(5.0) 49.0(5.3) 47.2(5.1) 
  60 0.838 0.673 0.741 0.490 57.0(9.3) 51.4(10.4) 56.6(10.4) 51.5(10.4) 

 0.8 50 0.939 0.971 0.898 0.944 50.0(10.2) 50.0(6.0) 50.1(10.4) 49.9(6.1) 
  70 0.889 0.916 0.825 0.857 67.8(11.9) 65.1(9.1) 67.7(12.4) 65.2(9.0) 
  90 0.502 0.270 0.374 0.164 79.1(23.4) 69.5(20.9) 75.6(26.9) 69.3(20.8) 
 1 50 0.993 0.998 0.985 0.994 50.0(6.5) 50.0(4.3) 50.0(6.6) 50.0(4.2) 

100  70 0.979 0.986 0.960 0.969 68.9(7.5) 66.4(6.8) 68.9(7.7) 66.4(6.8) 
  90 0.688 0.386 0.564 0.232 83.3(18.0) 72.3(18.8) 81.5(20.8) 72.3(18.8) 
 1.2 50 1.000 1.000 0.999 1.000 50.0(4.2) 50.0(3.1) 50.0(4.3) 50.0(3.1) 
  70 0.997 0.999 0.995 0.996 69.3(4.9) 67.2(5.3) 69.3(4.9) 67.3(5.4) 
  90 0.842 0.521 0.751 0.338 85.8(13.2) 74.6(17.2) 85.1(15.0) 74.6(17.1) 

 0.8 75 0.990 0.997 0.981 0.993 74.9(10.3) 75.0(6.6) 75.0(10.5) 75.0(6.7) 
  100 0.980 0.990 0.965 0.987 98.8(11.4) 95.9(9.3) 98.8(11.6) 95.8(9.2) 
  125 0.875 0.805 0.812 0.682 120.2(18.9) 109.9(19.5) 119.5(20.4) 110.2(19.5) 
 1 75 1.000 1.000 0.999 1.000 75.0(6.2) 75.0(4.5) 75.0(6.2) 75.0(4.5) 

150  100 0.999 1.000 0.998 0.999 99.4(6.8) 97.0(6.6) 99.3(6.8) 97.0(6.7) 
  125 0.974 0.947 0.954 0.895 122.7(11.0) 113.3(15.9) 122.6(11.6) 113.2(16.0) 
 1.2 75 1.000 1.000 1.000 1.000 75.0(4.1) 75.0(3.2) 75.0(4.1) 75.0(3.2) 
  100 1.000 1.000 1.000 1.000 99.6(4.3) 97.8(5.0) 99.6(4.2) 97.7(4.9) 
  125 0.997 0.992 0.994 0.978 123.8(6.5) 115.6(13.4) 123.7(6.7) 115.7(13.4) 

 



 

 
665

Table2. The Monte Carlo powers (at 05.0 ) of the tests RD , RK , RDD , RKK , and the 

Monte Carlo means and standard deviations (Std) of the estimators D̂ , K̂ , DD̂ , KK̂ , 

when Unif(0,1)1 F ,  Unif(2F , for different sample sizes n  and values of   and 

 . Observations with the subscript 1  are the last observations before the change. 

 
n    1  Power 

of  

RD  

Power 
of  

RK  

Power 
of  

RDD  

Power 
of  

RKK  

Mean (Std) 
of  

1ˆ D  

Mean (Std) 
of 

 1ˆ K  

Mean (Std) 
of 

 1ˆ DD  

Mean (Std) 
of 

 1ˆ KK  

 0.20 10 0.299 0.329 0.191 0.224 10.0(4.8) 9.9(3.4) 10.0(5.0) 9.9(3.4) 
  5 0.225 0.201 0.137 0.121 7.9(5.3) 8.1(4.2) 8.7(5.6) 8.1(4.2) 
  3 0.156 0.115 0.091 0.069 7.5(5.9) 8.0(4.8) 8.8(6.1) 8.0(4.8) 
 0.35 10 0.627 0.682 0.486 0.555 10.0(3.3) 9.9(2.2) 10.0(3.4) 9.9(2.2) 

20  5 0.470 0.419 0.319 0.277 6.8(4.0) 7.2(3.2) 7.2(4.4) 7.2(3.2) 
  3 0.294 0.184 0.182 0.105 6.1(5.0) 6.9(4.1) 7.0(5.4) 6.9(4.2) 
 0.50 10 0.893 0.924 0.809 0.864 10.0(2.0) 10.0(1.3) 10.0(2.0) 10.0(1.3) 
  5 0.753 0.691 0.597 0.516 6.0(2.8) 6.6(2.4) 6.1(2.9) 6.6(2.4) 
  3 0.489 0.259 0.332 0.147 5.0(3.8) 6.2(3.6) 5.4(4.3) 6.2(3.6) 

 0.20 20 0.481 0.546 0.359 0.418 20.0(8.5) 20.0(5.3) 20.0(9.0) 19.9(5.4) 
  10 0.368 0.344 0.258 0.228 14.3(9.9) 15.1(7.2) 15.7(10.7) 15.2(7.2) 
  5 0.218 0.141 0.138 0.084 13.2(12.0) 15.0(9.5) 15.9(12.7) 15.0(9.4) 
 0.35 20 0.890 0.926 0.821 0.874 20.0(4.6) 20.0(2.8) 20.0(4.7) 20.0(2.9) 

40  10 0.766 0.742 0.659 0.606 11.9(6.0) 13.2(4.9) 12.2(6.5) 13.2(4.9) 
  5 0.468 0.259 0.336 0.150 9.6(8.9) 12.5(7.9) 10.9(10.1) 12.5(7.9) 
 0.50 20 0.995 0.998 0.989 0.995 20.0(2.3) 20.0(1.6) 20.0(2.2) 20.0(1.6) 
  10 0.972 0.966 0.943 0.921 10.9(3.1) 12.2(3.3) 10.9(3.1) 12.1(3.4) 
  5 0.770 0.428 0.630 0.254 7.3(5.7) 10.8(6.6) 7.7(6.4) 10.9(6.6) 

 0.20 35 0.693 0.778 0.581 0.671 35.0(12.2) 35.0(7.0) 35.0(12.7) 35.0(7.0) 
  50 0.596 0.626 0.469 0.493 45.9(14.1) 44.2(9.6) 44.8(15.1) 44.1(9.5) 
  60 0.377 0.268 0.262 0.160 50.1(18.5) 46.2(14.5) 46.8(20.6) 46.2(14.6) 
 0.35 35 0.987 0.994 0.974 0.987 35.0(5.0) 35.0(3.2) 35.0(5.0) 35.0(3.2) 

70  50 0.964 0.971 0.934 0.938 48.8(6.1) 46.9(5.4) 48.8(6.1) 46.9(5.4) 
  60 0.795 0.616 0.684 0.440 56.3(10.4) 50.8(10.9) 55.7(11.6) 50.8(10.8) 
 0.50 35 1.000 1.000 1.000 1.000 35.0(2.1) 35.0(1.7) 35.0(2.2) 35.0(1.7) 
  50 1.000 1.000 0.999 1.000 49.5(2.6) 48.1(3.4) 49.5(2.5) 48.1(3.4) 
  60 0.983 0.922 0.964 0.810 58.6(4.8) 53.4(8.4) 58.6(4.8) 53.5(8.3) 

 0.20 50 0.827 0.896 0.743 0.831 50.0(14.4) 50.0(8.0) 49.9(14.6) 50.0(8.0) 
  70 0.753 0.793 0.648 0.692 66.4(16.5) 63.8(11.2) 65.6(17.4) 63.7(11.1) 
  90 0.366 0.206 0.258 0.127 75.0(27.5) 66.7(22.2) 69.6(31.0) 66.8(22.4) 
 0.35 50 0.999 1.000 0.998 0.999 50.0(4.9) 50.0(3.4) 50.0(4.9) 50.0(3.4) 

100  70 0.996 0.997 0.990 0.993 69.1(5.8) 66.9(5.8) 69.1(5.9) 67.0(5.8) 
  90 0.795 0.471 0.689 0.303 85.0(14.9) 73.9(17.6) 84.1(16.8) 73.8(17.6) 
 0.50 50 1.000 1.000 1.000 1.000 50.0(2.1) 50.0(1.7) 50.0(2.1) 50.0(1.7) 
  70 1.000 1.000 1.000 1.000 69.6(2.3) 68.2(3.4) 69.6(2.3) 68.2(3.4) 
  90 0.986 0.808 0.968 0.607 88.3(6.5) 77.9(14.2) 88.2(6.5) 77.9(14.1) 

 0.20 75 0.943 0.974 0.905 0.951 74.9(15.6) 75.0(8.9) 75.0(16.0) 75.0(9.0) 
  100 0.915 0.947 0.862 0.903 97.6(17.3) 94.3(12.0) 97.4(17.8) 94.3(12.2) 
  125 0.729 0.637 0.624 0.490 116.6(26.6) 106.5(22.8) 114.4(29.8) 106.6(22.9) 
 0.35 75 1.000 1.000 1.000 1.000 75.0(4.6) 75.0(3.6) 75.0(4.7) 75.0(3.6) 

150  100 1.000 1.000 1.000 1.000 99.5(4.9) 97.5(5.4) 99.5(4.9) 97.5(5.4) 
  125 0.995 0.987 0.989 0.964 123.4(7.7) 114.8(14.1) 123.4(8.0) 114.9(14.2) 
 0.50 75 1.000 1.000 1.000 1.000 75.0(2.0) 75.0(1.8) 75.0(2.0) 75.0(1.8) 
  100 1.000 1.000 1.000 1.000 99.7(2.1) 98.6(3.0) 99.7(2.1) 98.6(3.0) 
  125 1.000 1.000 1.000 1.000 124.3(2.9) 118.4(9.7) 124.3(2.8) 118.4(9.7) 
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Table3. The Monte Carlo powers (at 05.0 ) of the tests RD , RK , RDD , RKK , and the 

Monte Carlo means and standard deviations (Std) of the estimators D̂ , K̂ , DD̂ , KK̂ , 

when  1,01 LogNormF  ,  1,2 LogNormF  , for different sample sizes n  and values of   

and  . Observations with the subscript 1  are the last observations before the change. 

 
n    1  Power 

of  

RD  

Power 
of  

RK  

Power 
of  

RDD  

Power 
of  

RKK  

Mean (Std) 
of  

1ˆ D  

Mean (Std) 
of 

 1ˆ K  

Mean (Std) 
of 

 1ˆ DD  

Mean (Std) 
of 

 1ˆ KK  

 0.7 10 0.323 0.356 0.210 0.251 10.0(4.6) 9.9(3.3) 9.9(4.9) 9.9(3.3) 
  5 0.241 0.217 0.148 0.131 7.8(5.2) 8.0(4.1) 8.5(5.5) 8.0(4.1) 
  3 0.163 0.121 0.091 0.076 7.4(5.8) 7.8(4.8) 8.5(6.0) 7.8(4.8) 
 1.2 10 0.662 0.720 0.526 0.597 10.0(3.0) 9.9(2.0) 10.0(3.2) 9.9(2.0) 

20  5 0.522 0.461 0.360 0.312 6.6(3.8) 7.1(3.1) 7.0(4.1) 7.1(3.0) 
  3 0.325 0.195 0.189 0.110 5.8(4.7) 6.8(4.1) 6.7(5.3) 6.8(4.1) 
 1.7 10 0.907 0.936 0.831 0.887 10.0(1.8) 10.0(1.2) 10.0(1.8) 10.0(1.2) 
  5 0.785 0.724 0.640 0.563 6.0(2.6) 6.5(2.3) 6.0(2.7) 6.5(2.3) 
  3 0.546 0.273 0.353 0.154 4.8(3.6) 6.1(3.5) 5.2(4.1) 6.1(3.5) 
 0.7 20 0.516 0.584 0.395 0.464 20.0(8.0) 19.9(5.0) 20.0(8.5) 19.9(5.0) 
  10 0.399 0.377 0.287 0.256 14.0(9.5) 14.9(6.9) 15.1(10.3) 14.9(7.0) 
  5 0.235 0.149 0.147 0.089 12.8(11.6) 14.7(9.3) 15.2(12.6) 14.6(9.3) 
 1.2 20 0.915 0.946 0.859 0.904 20.0(4.1) 20.0(2.6) 20.0(4.2) 20.0(2.6) 

40  10 0.808 0.782 0.711 0.663 11.6(5.4) 13.0(4.5) 11.8(5.8) 13.0(4.6) 
  5 0.520 0.280 0.375 0.162 9.0(8.4) 12.1(7.7) 10.1(9.5) 12.1(7.7) 
 1.7 20 0.997 0.999 0.993 0.996 20.0(2.0) 20.0(1.4) 20.0(2.0) 20.0(1.4) 
  10 0.979 0.973 0.956 0.936 10.8(2.8) 12.0(3.2) 10.8(2.9) 12.0(3.2) 
  5 0.814 0.453 0.687 0.269 7.1(5.4) 10.6(6.4) 7.3(5.9) 10.6(6.4) 
 0.7 35 0.734 0.815 0.625 0.722 35.0(11.3) 35.0(6.4) 35.1(11.7) 35.0(6.5) 
  50 0.640 0.669 0.517 0.539 46.3(13.0) 44.6(9.1) 45.6(14.3) 44.5(9.1) 
  60 0.411 0.292 0.290 0.180 51.0(17.7) 46.8(14.2) 48.2(19.8) 46.8(14.2) 
 1.2 35 0.992 0.997 0.984 0.993 35.0(4.3) 35.0(2.9) 35.0(4.4) 35.0(2.9) 

70  50 0.976 0.981 0.953 0.960 49.0(5.2) 47.2(5.1) 49.0(5.3) 47.1(5.0) 
  60 0.841 0.672 0.747 0.495 57.0(9.4) 51.4(10.3) 56.6(10.2) 51.4(10.4) 
 1.7 35 1.000 1.000 1.000 1.000 35.0(2.0) 35.0(1.6) 35.0(1.9) 35.0(1.6) 
  50 1.000 1.000 1.000 1.000 49.5(2.3) 48.2(3.2) 49.6(2.3) 48.2(3.2) 
  60 0.987 0.938 0.972 0.849 58.8(4.2) 53.7(8.1) 58.8(4.3) 53.8(8.0) 
 0.7 50 0.866 0.924 0.795 0.871 50.0(12.8) 49.9(7.3) 50.0(13.2) 50.0(7.3) 
  70 0.796 0.835 0.705 0.743 66.9(15.1) 64.3(10.6) 66.4(15.8) 64.2(10.5) 
  90 0.403 0.224 0.291 0.136 76.7(26.2) 67.6(21.8) 72.0(29.7) 67.4(21.9) 
 1.2 50 1.000 1.000 0.999 1.000 50.0(4.2) 50.0(3.1) 50.0(4.3) 50.0(3.0) 

100  70 0.998 0.999 0.994 0.996 69.3(5.0) 67.3(5.3) 69.4(5.0) 67.2(5.2) 
  90 0.843 0.520 0.751 0.343 85.8(13.1) 74.6(17.0) 85.2(14.8) 74.6(17.0) 
 1.7 50 1.000 1.000 1.000 1.000 50.0(1.9) 50.0(1.6) 50.0(1.9) 50.0(1.6) 
  70 1.000 1.000 1.000 1.000 69.6(2.1) 68.3(3.1) 69.6(2.1) 68.4(3.2) 
  90 0.989 0.843 0.975 0.660 88.6(5.6) 78.4(13.9) 88.5(5.7) 78.3(13.9) 
 0.7 75 0.962 0.985 0.935 0.969 75.0(13.8) 75.0(8.1) 75.0(14.0) 75.0(8.2) 
  100 0.940 0.964 0.899 0.931 98.1(15.3) 94.9(11.0) 98.0(15.9) 94.9(11.0) 
  125 0.776 0.686 0.684 0.541 117.9(23.8) 107.8(22.0) 116.4(26.7) 107.6(22.0) 
 1.2 75 1.000 1.000 1.000 1.000 75.0(4.1) 75.0(3.2) 75.0(4.0) 75.0(3.2) 

150  100 1.000 1.000 1.000 1.000 99.6(4.2) 97.7(4.9) 99.6(4.3) 97.8(4.9) 
  125 0.997 0.992 0.994 0.978 123.7(6.6) 115.6(13.3) 123.7(6.5) 115.5(13.3) 
 1.7 75 1.000 1.000 1.000 1.000 75.0(1.9) 75.0(1.6) 75.0(1.8) 75.0(1.6) 
  100 1.000 1.000 1.000 1.000 99.7(1.9) 98.7(2.8) 99.7(2.0) 98.7(2.8) 
  125 1.000 1.000 1.000 1.000 124.4(2.5) 118.9(9.3) 124.4(2.5) 118.8(9.3) 

 
Tables 1-3 show that for all considered examples and sample sizes, when an 

alternative is one-sided, the test RK  is preferable to the test RD  from the power 
perspective if a change in the distributions occurs in the middle ( 2/n ) and the situation 

is reversed when the change occurs in the edges ( 2  or n ). Thus, our simulation 

results confirm the conclusions follow from the Monte Carlo experiments presented by Wolfe 
and Schechtman (1984) and Gurevich (2009) about power comparisons of the 
nonparametric tests RK  and RD . Note also that when an alternative is two-sided, the 
power's comparison of the tests  RKK  and RDD  seems to be a similar to that of RK  and 
RD . That is the test  RKK  is preferable to the test RDD  if the real change occurs in the 
middle and the test RDD  is preferable to the test RKK when the real change point   is 
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close to the edges. As expected, the powers of the test RK , RD  are essentially higher than 
that of the tests RKK , RDD , respectively, for all considered situations. Obviously, it follows 
from the fact that the tests RK and RD  have been constructed utilizing an additional 
information about possible alternatives. Finally, analyzing the simulated powers of the tests 
RD , RK , RDD , RKK  presented in Tables 1-3, we conclude that all these test are very 
efficient providing rather high powers even for average and small sample sizes ( 40n , 

20n ) and insignificant real changes in distributions of the observations.  

It follows from Tables 1-3 that the simulated means and standard deviations of 

the estimators K̂  are very similar to that of the estimator KK̂  for all considered examples 

and values of the parameter  . That means that if one decides to use the estimator of a 

change point   based on the statistic K , it is not important to define the alternative in (1) 

as a one-sided (and use the estimator K̂ )  or as a two-sided (and use the estimator KK̂ ). 

Comparing the behavior of the estimator D̂  with that of the estimator DD̂  shows that the 

estimator D̂  is more exact than DD̂  (i.e., the simulated means of D̂  are closer to the real 

values of   and his simulated standard deviations are less than that of DD̂ ), especially for 

large sample sizes. That is, if one decides to use the statistic D  for the testing of the 
hypotheses (1) and estimating of the change point  (i.e., the possible change is suspected 

to be close to edges), the definition of the alternative of (1) as a one-sided not only increases 
the power of the appropriate test ( RD  is more powerful than RDD ) but also yields more 

exact estimator ( D̂  is more exact than DD̂ ).  

In addition, Tables 1-3 demonstrate that for all considered examples and values of 

 , for small and average sample sizes ( 40,20n ) the estimator D̂  is slightly less biased 

than the estimator K̂  (i.e., the simulated means of the estimator D̂  are slightly closer to 

the real values of   than that of the estimator K̂ ) but has a slightly higher variance than 

that of K̂ . For large sample sizes, the estimator D̂  is essentially less biased than the 

estimator K̂  (especially if a real changes are close to the edges), and has a higher variance 

than the estimator K̂  for 2/n , and a lower variance than K̂  for 2  and n . 

Thus, the estimator D̂  seems to be preferable to all the other estimators considered here 

and can be recommended to be applied in practice for estimation of a change point 
parameter, even for the situations where the possible change is suspected to be in the 
middle and tests based on the statistic K  are appropriate for the hypotheses (1). Moreover, 
the simulated results presented in Tables 1-3 demonstrate a good performance of all four 
proposed estimators from the practical point of view especially for average and large sample 
sizes.  

As aforementioned, the asymptotic analysis of the estimators' behavior is beyond 

the scope of this article, however, it seems from Tables 1-3 that the estimators K̂ , D̂ , KK̂ , 

DD̂  are consistent when  , n .    
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4. Conclusions 

 
In this article we have reviewed the recent change point literature related to the 

retrospective change point detection and estimation issues. We focused on the problem of 
nonparametric estimation of the change point parameter and considered four relevant 
estimators. We conducted a broad Monte Carlo study for judging the accuracy of the 
proposed change point estimators also comparing them from an implementation point of 
view. Simulation results confirm the efficiency of these estimators even for small and average 
sample sizes. Specific practical recommendations for using different estimators in varied 
situations are given in Section 3. Thus, we believe that the outputs of this manuscript have 
great potential to be applied in practice.    
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