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Abstract: A research is undertaken to justify the use of beta-distribution p.d.f. for man-
machine type activities under random disturbances. The case of using one processor, i.e., a 
single resource unit, is examined. It can be proven theoretically that under certain realistic 
assumptions the random activity – time distribution satisfies the beta p.d.f. 
Changing more or less the implemented assumptions, we may alter to a certain extent the 
structure of the p.d.f. At the same time, its essential features (e.g. asymmetry, unimodality, etc.) 
remain unchanged. 
The outlined above research can be applied to semi-automated activities, where the presence 
of man-machine influence under random disturbances is, indeed, very essential. Those 
activities are likely to be considered in organization systems (e.g. in project management), but 
not in fully automated plants. 
 
Key words:  random activity duration; time – activity beta-distribution; operating by means of 

a single processor; convergence to a beta-distribution “family” 
 
1. Introduction 
 

In PERT analysis [1-24, etc.] the activity-time distribution is assumed to be a beta-
distribution, and the mean value  and variance of the activity time are estimated on the basis 
of the “optimistic”, “most likely” and “pessimistic”  completion times, which are subjectively 
determined by an analyst. The creators of PERT [3, 17] worked out the basic concepts of PERT 
analysis, and suggested the estimates of the mean and variance values 
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subject to the assumption  that the probability density function (p.d.f.) of the activity 
time is 
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Here  a   is the optimistic time, b -  the pessimistic time,  and  m   stands for the 
most likely  (modal)  time. 

Since in PERT applications parameters a  and b  of p.d.f. (3) are either known or 
subjectively determined, we can always transform the density function to a standard form, 
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Let p=−1α , q=−1β . Then p.d.f. (4) becomes 
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with the mean, variance and mode as follows: 
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From (6) and (9) it can be obtained 
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Thus, value xm , being obtained from the analyst’s subjective knowledge, indicates 

the density function. On the basis of statistical analysis and some other intuitive arguments, 

the creators of PERT assumed that 4≅+ qp .  It is from that assertion that estimates (1) and 

(2) were finally obtained, according to (6-9). 
Although the basic concepts of PERT analysis have been worked out many years 

ago [3, 17], they are open till now to considerable criticism. Numerous attempts have been 

made to improve the main PERT assumptions for calculating the mean  xμ   and variance  



  
International Symposium on Stochastic Models  

in Reliability Engineering, Life Sciences and  
Operations Management (SMRLO'10) 

 

 
462 

2
xσ   of the activity-time on the basis of the analyst’s subjective estimates. In recent years, a 

very sharp discussion [7, 10, 14, and 21] has taken place in order to raise the level of 
theoretical justifications for estimates (1) and (2). 

Grubbs [12] pointed out the lack of theoretical justification and the unavoidable 
defects of the PERT statements, since estimates (1) and (2) are, indeed, “rough” and cannot 

be obtained from (3) on the basis of values a ,  m  and b  determined by the analyst. Moder 

[18-19] noted that there is a tendency to choose the most likely activity – time m  much 

closer to the optimistic value a  than to the pessimistic one, b , since the latter is usually 
difficult to determine and thus is taken conservatively large. Moreover, it is shown [8] that 
value m , being subjectively determined, has approximately one and the same relative 

location point in [ ]ba,  for different activities. This provides an opportunity to simplify the 

PERT analysis at the expense of some additional assumptions. McCrimmon and Ryavec [16],  
Lukaszewicz [15] and Welsh [22] examined various errors introduced by the PERT 
assumptions, and came to the conclusion  that these errors may be as great as 33%. Murray 
[20] and Donaldson [4] suggested some modifications of the PERT analysis, but the main 
contradictions nevertheless remained. Farnum and Stanton [6] presented an interesting 
improvement of estimates (1) and (2) for cases when the modal value m  is close to the 
upper or lower limits of the distribution. This modification, however, makes the distribution 
law rather uncertain, and causes substantial difficulties to simulate the activity network. 

In this paper, a research will be undertaken to develop some theoretical 
justifications for using the beta-distribution p.d.f. 

 
2. The Operation's Description 
 

We will consider a man-machine operation which is carried out by one processor, 
i.e., by one resource unit.  The processor may be a machine, a proving ground, a 
department in a design office, etc. 

Assume that the operation starts to be processed at a pregiven moment 0T . The 

completion moment F  of the operation is a random value with distribution range [ ]21 ,TT . 

Moment 1T  is the operation’s completion moment on condition that the operation will be 

processed without breaks and without delays, i.e., value 1T  is a pregiven deterministic value.  

Assume, further, that the interval  [ ]10 ,TT   is subdivided into n  equal elementary periods 

with length ( ) nTT 01 − .  If within the first elementary period ( )[ ]nTTTT 0100, −+  a break 

occurs, it causes a delay of length ( ) nTT 12 −=Δ . The operation stops to be processed 

within the period of delay in order to undertake necessary refinements, and later on 
proceeds functioning with the finishing time of the first elementary period  

( ) ( ) ( ) nTTTnTTnTTT 02012010 −+=−+−+ . 

It is assumed  that there cannot be more than one break in each elementary 
period. The probability of a break at the very beginning of the operation is set to be p . 

However, in the course of carrying out the operation, the latter possesses certain features of 
self-adaptivity, as follows: 
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• the occurrence of a break within a certain elementary period  results in 
increasing the probability of a new break at the next period by value  η ,  and 

• on the contrary,  the absence of a break within a certain period  decreases the 
probability of a new break within the next period,  practically by the same value. 

 
3. The Concept of Self-Adaptivity 
 

The probabilistic self-adaptivity can be formalized as follows: 

Denote k
iA  the event of occurrence of a break within the ( )1+i -th elementary 

period, on condition, that within the  i  preceding elementary periods  k   breaks occurred,  

nik ≤≤≤1 .  It is assumed that relation 

( )
η
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=
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(11) 

holds. Note that (11) is, indeed, a realistic assumption. 

Relation (11) enables obtaining an important assertion.  Let  ( )0
iAP   be the 

probability of the occurrence of a break within the ( )1+i -th period on condition, that there 

have been no breaks at all as yet. Since 

( )
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it can be well-recognized  that relation 
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holds. Thus, an assertion can be formulated as follows: 
Assertion.  Self-adaptivity (11) results in a probability law for delays with a constant 

ratio (13) for a single delay. 
 

4. Calculating the Activity-Time Distribution 
 

Let us calculate the probability nmP ,  of obtaining m  delays within n  elementary 

periods, i.e., the probability of completing the operation at the moment  

( )1211 TT
n
mTmTF −+=Δ⋅+= . 

The number of sequences of n  elements with m  delays within the period [ ]FT ,0  

is equal m
nC , while the probability of each such sequence equals 
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Relation (14) stems from the fact that if breaks occurred within h  periods and did 

not occur within k   periods, the probability of the occurrence of the delay at the next period 
is equal 

( )η
η
hk

hp
++

+
1

 , (15) 

while the probability of the delay’s non-appearance at the next period  satisfies 
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Using (14-16), we finally obtain 
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Note that 0=η , i.e., the absence of self-adaptivity, results in a regular binomial 

distribution. 

Let us now obtain the limit value nmP ,  on condition that ∞→n .  From relation 

(17) we obtain 
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Denoting xnm = , ( ) xxnm Δ+=+1 , yP nm =, ,  yyP nm Δ+=+ ,1 , via 

convergence ∞→n  or  0→Δx  and, later on, by means of integration, we finally obtain 

( ) 11 1 −− −= βα xxCy  . (19) 

It can be well-recognized that the p.d.f. of random value 
n
m

n ∞→
= limξ  satisfies 

( ) ( ) ( ) 11 1
,

1 −− −= βα
ξ βα

xx
B

xp  , (20) 

where ( )βα ,B  represents the Euler's function. Thus, relation (20) practically 

coincides with (10). 

Thus, ξ  is a random value with the beta-distribution activity–time p.d.f. By 

transforming ( ) ( )abayx −−= ,  we obtain the well-known p.d.f. (3). 
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5. Conclusions 
 

The following conclusions can be drawn from the study: 
1. Under certain realistic assumptions we have proven theoretically that the activity-time 

distribution satisfies the beta-distribution with p.d.f. (3) being used in PERT analysis. 

2. Changing more or less the implemented assumptions, we may alter to a certain extent 
the structure of the p.d.f. At the same time, its essential features (e.g. asymmetry, 
unimodality, etc.) remain unchanged. 

3. The outlined above research can be applied to semi-automated activities, where the 
presence of man-machine influence under random disturbances is, indeed, very 
essential. Those activities are likely to be considered in organization systems (e.g., in 
project management), but not in fully automated plants. 
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