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Abstract: We suggest a new approach to solve discrete optimization problems, based on the 
possibility of presenting a function as a superposition of simpler functions. Such a superposition 
can be easily represented in the form of a network for which the inputs correspond to 
variables, intermediate nodes – to functions entering the superposition, and in the final node 
the function is calculated. Due to such representation the method has been called the method 
of network programming (in particular, dichotomic). The network programming method is 
applied for solving nonlinear optimization problems. The concept of a dual problem is 
implemented. It is proved that the dual problem is a convex programming problem. Necessary 
and sufficient optimality conditions for a dual problem of integer linear programming are 
developed. 
 
Key words:  network programming; nonlinear optimization; dual problem; integer linear 
programming 
 
 

1. Introduction 
 

Problems of nonlinear optimization (in particular, discrete optimization) refer to the 
class of so-called NP-difficult problems for which no effective methods of exact solution do 
exist. Some general approaches are available, among others the branch and bounds method 
and the method of dynamic programming [1]. Unfortunately, the dynamic programming 
method is applicable only to a narrow class of problems. The efficiency of the branch and 
bounds method depends essentially on accuracy of the upper and lower estimates (bounds). 
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To assess those estimates the method of multipliers of Lagrange [1] is developed. These 
methods are known from the past 60-s, and since then more than they have not been 
improved significantly. 

In 2004 V.N.Burkov and I.V.Burkova suggested a new approach to solve discrete 
optimization problems, based on the possibility of presenting a function as a superposition of 
simpler functions. Such a superposition can be easily represented in the form of a network 
for which the inputs correspond to variables, intermediate nodes – to functions entering the 
superposition, and in the final node the function is calculated. Due to such representation 
the method has been called the method of network programming [2] (in particular, 
dichotomic). This method is applicable to cases when the goal function and restriction 
functions obtain identical network structure. For such cases network node optimization 
problems, simpler than the pregiven ones, are solved. The problems' solution for the final 
node presents the upper (or lower) estimates for the given problem. For the case when the 
network structure is a tree, the solution becomes an exact one. The Bellman's dynamic 
programming method for which the network structure comprises tree branches, becomes 
thus a particular case of the more generalized proposed approach. A variety of problems for 
which the dynamic programming method is inapplicable, have been solved by the network 
programming method. 

In the present paper the network programming method [2] is applied to nonlinear 
programming problems. The concept of a dual problem, for which one of the feasible (but 
usually non-optimal) solutions is obtained, is suggested by means of multipliers of Lagrange. 
It is proved that the dual problem is a convex programming problem. Necessary and 
sufficient optimality conditions for a dual problem of integer linear programming are 
developed. 
 

2. The Network Form of a Nonlinear Programming Problem 
 

Let's consider a problem of nonlinear programming -  to determine 

{ }nixx i ,1, == , satisfying 

( ) max→xf  (1) 

 
subject to 
 

( ) mjbx jj ,1, =≤ϕ , (2) 

1+∈ mXx . (3) 

 
On Figure 1 the network representation of restrictions (2-3) is given. Here Xj 

denotes the j -th restriction (2), mj ,1= . 
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Figure 1. Network representation of restrictions 

 
In order to apply the network programming method we have to represent the goal 

function with the same network structure. For this purpose we will present f(х) in the form 

( ) ( ) ( )xhxhxf m

m

j
j 1

1
+

=
+= ∑ , (4) 

where hj(х) stands for functions which deliver solutions for the below problems (5-6). 
In each vertex of the network structure several optimization sub-problems with one 

restriction are solved. The first m sub-problems are as follows: 

( )
( ) .

,max

jj

j

bx
xh

≤ϕ
 (5) 

while the (m+1) -th sub-problem looks as follows: 

( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

=∈+∈ +

m

j
iXxmXx

xhxfxh
m 1

1
1

maxmax . (6) 

Denote Fj(h)  the value of the goal function for the optimal solution of the j -th sub-
problem. 

Theorem 1. Linear model 

( ) ( ) ( )hFhFhF m

m

j
jj 1

1
+

=
+= ∑  (7) 

delivers the upper estimate for a pre-given problem. 
Proof. All feasible solutions (1-3) are feasible for all sub-problems (5-6), and any 

feasible solution х satisfies 

( ) ( )xfxh
m

j
j =∑

+

=

1

1 . 
Therefore F(h) ≥ f(x) for any feasible х. 

 
3. The Dual Problem 
 

It is obvious to suggest the problem of determining functions hj(х), mj ,1= , which  

minimize the upper estimate (7). This problem is, in essence, a generalized dual problem for 
the initial problem of nonlinear programming. The reasons for this are as follows. First, as 
shown below (see Example 1), one of the feasible solutions of the generalized dual problem 

 

Xm+1 X1 Xm … 

x 

I
j

jXX =
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is a minimax of function of Lagrange. Note that determining the minimax Lagrange function 
is often called the dual one for the problem of nonlinear programming. Second, for a 
problem of linear programming without an integer solution  the generalized dual problem is 
a usual dual problem of linear programming (see Section 4). 

Theorem 2. Function F(h) is a convex one. 
Proof. Let h1(х) and h2(х) be two solutions of a dual problem. Consider the solution 

( ) ( ) 10,1 21 ≤≤−+= ααα hhxh . 

We obtain 

( ) ( )[ ] ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( )[ ] ( ) ( )

( )
( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( ).1maxmax1

maxmax1max
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The inequality stems from the evident reason that the maximum of the sum is less 
or equal to the sum of maxima. 

Thus, the dual problem is a convex programming problem. 
Example 1. Consider one of the feasible solutions of the dual problem, namely, 

mjxx jjjh ,1),()( == ϕλ . The first m sub-problems are as follows: 

max)( →xjjϕλ  
subject to 

( ) jj bx ≤ϕ
. 

Evidently ( ) mjbhF jjjj ,1, =≤ λ . By means of this assertion together with (7), 

we finally obtain 

( ) ( ) ( )( ) ( )xLbxxfF
mm Xx

m

j
jjjXx

,maxmax
11 1

λϕλλ
++ ∈=∈

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−≤ ∑ . (8) 

Maximizing the right part (8) on λ is nothing but the method of multipliers of 
Lagrange. Thus, the method of multipliers of Lagrange provides a feasible solution of the 
dual problem (which, generally speaking, may be not an optimal one). 
 
4. Upon One Integer Linear Programming Problem 
 

Consider an integer linear programming problem as follows:  determine an integer 
nonnegative vector х, to maximize 

( ) ∑
=

=
n

i
ii xcxC

1  
(9) 

subject to 

1,1,
1

+=≤∑
=

mjbxa j

n

i
iij . (10) 
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Take the last restriction in (10) as the set Хm+1. Sub-divide each value mici ,1, = , 

on m partial values sij as follows: 

niscs
m

j
ijimi ,1,

1
1; =−= ∑

=
+ . (11) 

Solve (m+1) sub-problems as follows: determine an integer nonnegative vector x, 
to maximize 

( ) ∑=
i

iijj xsxS . (12) 

subject to 

j

n

i
iij bxa ≤∑

=1
. (13) 

Denote by Fj(s) the value Sj(x) providing the optimal solution for the j -th 
subproblem. According to Theorem 1 

( ) ( ) ( )sFsFsF m

m

j
jj 1

1
+

=

+= ∑  (14) 

is an upper estimate for С(х): 

( ) ( )xCsF ≥ . 

The dual problem: determine{ }mjnisij ,1,,1, == , minimizing (14). Note that 

cancelling the requirement of integrality results in transforming problem (14) to a common 
dual linear programming problem [3]. 

To prove this accession consider problem (9-10) without the integrality 
requirement. In this case the estimation problems are easily solved, namely 

( )
ij

ij

ijjj a
s

bsF max= . 

Denote 

1,1,max +== mj
a
s

y
ij

ij

ij . 

Thus, the upper estimate for the objective of the initial problem looks as follows: 

( ) ∑=
j

jjbyyФ .  (15) 

Since  aij yj ≥ sij, relation (11) transfers to 

nicya i
j

jij ,1, =≥∑ . (16) 

The dual problem is to minimize (15) subject to (16). This is a common dual linear 
programming problem. 

Set mjnis ijjij ,1,,1, === αλ . As outlined above, the problem boils down to the 

method of multipliers of Lagrange as follows: determine vector λ, minimizing 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
−− ∑ ∑∑

=
∈ +

m

j
j

i
ijj

i
iiXx

baxc
m 11

max λ . (17) 
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Consider necessary and sufficient conditions to obtain the optimal solution of the 
dual problem. Let s be a feasible solution. Denote Рj (sj) the set of optimal solutions  for 

(m+1) sub-problems (12-13), 1,1 += mj . 

Theorem 3. The necessary and sufficient condition to obtain the optimal solution s  
is the inability to solve inequality 

( )
0max <∑ ∑

∈j i
iijsPx

xy
jj

 (18) 

subject to 

niy
m

j
ij ,1,0

1

1
==∑

+

=

. (19) 

Proof. Denote by yij small increments of sij. We will prove that relations (19) stem 
from (11). Indeed, it boils down from (11) that 

( ) i

m

i
iji

m

j
ijij csndcsy ==+ ∑∑

+

=

+

=

1

1

1

1
a  

hold. The latter provides (19). The increment of value Fj (sj) is, obviously, equal 

( )
,max ∑

∈
=Δ

i
iijsPxj xyF

jj

 

while the total increment satisfies 

.∑Δ=Δ
j

jFF  

Since s is the optimal solution, ∆F cannot be negative. 

Numerical Example 2. xi = 0, 1; i = 4,1 . 

max76810 4321 →+++ xxxx , (20) 

115236 4321 ≤+++ xxxx , (21) 

113653 4321 ≤+++ xxxx . (22) 

Apply the method of multipliers of Lagrange, i.e. determine the minimum of λ 
functions 

( ) ( ) ( ) ( )[ ],572638610max11 4321
2

xxxx
Xx

λλλλλ −+−+−+−+
∈

 

where Х2 is determined by (22). With pre-set λ this is a one-dimensional knapsack problem. 
In case when the dependence of the right part of b2 (see restriction (22)) from n is unknown, 
this problem turns to be NP-difficult [4]. However in practice, b2 either does not depend on 
n, or is a linear function of n. In such cases, for integer parameters, the problem is efficiently 
solved by means of either dynamic or dichotomic programming. The determined optimal 

value 9
2

0 1=λ , with the upper estimate 3
1

0 21=F . This level λ0 corresponds to the 

following values 2,1,4,1, == jisij : 

.;3;4;2
;6;2;3;7

9
8

429
5

323
1

223
2

11112

9
1

410419
4

310313
2

210213
1

11011

====−=
========

sssscs
asasasas λλλλ

. (23) 

Let's apply the network programming method.  
Step 1. Determine necessary optimality conditions for solution (23). Consider: 
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( ) ( ) ( ){ }
( ) ( ) ( ){ }.0,1,1,0;1,0,1,1

;1,0,0,1;0,1,1,1

22

11

=
=

sP
sP

 

Since уi1 + уi2 = 0, denote уi = уi1 = -уi2. In this case relations (18-19) can be 
represented as 

( ) ( )3242141321 ;min;max yyyyyyyyyy +++<+++ . 

One of the solutions for those relations is as follows: 

0;0;;; 4321 >=−==−= εεεε yyyy . 

Set 6
5=ε  ; since this value results in a new solution of the second sub-problem. 

We obtain: 

;;4;3;3
;6;1;4;6

9
8

4218
7

322
1

222
1

12

9
1

4118
11

312
1

212
1

11

====
====

ssss
ssss

 

( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ } ;7;0,1,0,1;0,1,1,0;1,0,1,1

;12;0,1,1,1;1,0,0,1

9
8

222

18
11

111

==
==

FsP
FsP

      .20 2
1=F  

Step 2. Consider optimality conditions 

( ) ( )313242141321 ;;min;max yyyyyyyyyyyy ++++<+++ . 

It can be well-recognized that this inequality has no feasible solutions. Indeed, 
condition у1 + у2 + у3 < у1 + у2 + у4 results in у3 < у4, while condition у2 + у4 < у2 + у3 
leads to a contradictive у4 < у3. Hence, the optimal solution of the dual problem is obtained. 
The determined upper estimate may be used in the branch and bounds method. Start 
branching with variable х1. If х1 = 1 then the solution of the corresponding dual problem 
results in the same estimate F(х1=1) = 201/2. In case х1 = 0 the obtained estimate 
F(х1=0) = 14. Choose value х1 = 1 and undertake branching for variable х2. х2 = 1 results in 
a feasible estimate F(х1=1, х2=1) = 18. х2 = 0 results in another feasible estimate 
F(х1=1, х2=0) = 17.  Thus, the optimal solution is х1 = 1, х2 = 1, х3 = 0, х4 = 0, Сmах = 18. 
 

5. Conclusions 
 

The suggested approach provides a generalized method to determine estimates for 
a broad class of nonlinear programming problems. This approach enables using new 
algorithms to solve a variety of problems, with the computing complexity being less, than 
that when using classical algorithms (the knapsack problem [3], the maximal flow problem 
[5], the "stones" problem [3], etc.). Further research has to be undertaken to estimate the 
computing complexity of the network programming method  for various problems of 
nonlinear programming. 
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