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Abstract: We propose a change-point approach for testing the constancy of regression 

parameters in a linear profile data set (panel data in econometrics). 
Each sample collected over time in the historical data set consists of several multivariate 
observations for which a linear regression model is appropriate. The question now is whether 
all of the profiles follow a linear regression model with the same parameter vector or whether 
a change occurred in one or more model parameters after a special sample. 
We use the partial sum operator in several dimensions to test the null hypothesis "H0: no 
change-point occurred" and propose a non-parametric size α-test. 

In Bischoff and Gegg (2010) we compared our proposed method with the likelihood-ratio-test 
by Mahmoud et al. (2007) in a simulation study. By these simulations we could show that our 
procedure can, in contrast to the likelihood-ratio-test, even be applied to the non-normal case. 
In this paper, however, we show how to compute our proposed test statistic step-by-step by 
considering an artificial data set. 
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1. Introduction 
 

We investigate a linear profile data set for change-points. In economics, linear 
profile data are also known as‚ "panel data''. Note that linear profile data are assumed to be 
ordered in a natural way. In most of the applications the profiles will be sampled 
sequentially and so time is the ordering variable. We attack this problem by using the results 
given in Bischoff and Gegg (2010), where a linear regression model with p-variate response 
was considered. In order to find change-points in regression models we investigated there 
the partial sums of the least squares residuals. Without specifying the error a nonparametric 
test (as for instance a test of Kolmogorov-Smirnov type) can then be applied to the limit 
process of the partial sums in order to test whether a change-point does or does not occur. 
MacNeill (1978a,b) and Bischoff (1998, 2002) give basic theoretical results concerning the 
residual partial sums process for univariate response, whereas Bischoff (2010) demonstrates 
this approach in case of univariate regression by using an example from quality control. 
Note that the residual partial sums technique can also be used to check asymptotically for 
regression with multivariate correlated response (Bischoff and Gegg, 2010). 

Our proposed method is a two-step-procedure: In a first step, we estimate the 
parameter vectors for every profile. In a second step we analyze these estimations which 
build a linear model with multiple correlated response under the null hypothesis that the 
profile data have no change-point. 

Mahmoud et al. (2007) also attacked the described change-point problem and 
proposed a modification of a likelihood ratio test (LRT) for the case of simple linear 
regression with normally distributed error terms. By asymptotic considerations our method 
does not need assumptions about the distribution of the error terms and so it is more robust 
against departure from normal distribution, see Bischoff and Gegg (2010). A further 
advantage of our procedure is that the alternative hypothesis does not have to be specified. 

 
2. Linear Profile Data 
 

In practice, one often wants to test whether all of a fixed number m , say, of 

independent samples follow the same known linear model. To be more precise let 
W(j) = X β(j) + ε (j),           β(j) є Rp unknown, (1) 
 

be a linear model for every profile  j є {1,...,m}, where 
 

(A1)     X є Rn×p is the corresponding design matrix of explanatory variables with rank(X) =p≤n, 

(A2)     and ε(j)  is the vector with iid components )()(
1 ,..., j

n
j εε   having mean 0 and variance σ2. 

 
Note that assumption (A1) in particular claims that the same design is used for 

each profile j. Furthermore, since different profiles are assumed to be independent, so are 
ε(1),...,ε(m). In the sequel we assume model (1), together with the assumptions (A1) - (A2), to 
be true for each j. Model (1) is called the "j-th Linear Profile" and the aim is to test for a 
change-point in the parameter vector. Since the profiles have a natural ordering we can 
formulate the corresponding hypothesis by 



  
International Symposium on Stochastic Models  

in Reliability Engineering, Life Sciences and  
Operations Management (SMRLO'10) 

 

 
518 

(1) (m)
0H : ...β = β = = β    vs.  { } 0 0(m ) (m 1)(1) (2)

1 0H : m 1,..., m 1 : ... +∃ ∈ − β = β = = β ≠ β  (2) 

and so the testing problem is indeed a change-point problem. In order to check (2) 

we estimate β(j) by the least-squares estimator )(ˆ jβ  . With our assumptions (A1)-(A2) we 

have )(ˆ jβ  =(XT X)-1 XT  W(j)  with 

E( )(ˆ jβ ) = β(j)        and       Cov( )(ˆ jβ ) = σ2 (XT X)-1 =: Σ. (3) 

In case σ2  is unknown, our proposed procedure can also be used by replacing σ2 
with a consistent estimator for σ2  under H0. So we can assume without loss of generality, Σ is 

a known positive definite matrix. Furthermore )()1( ˆ,...,ˆ mββ are independent since the 

different samples W(1),…,W(m) are assumed to be independent. Let  Y:=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

T

T

m)(

)1(

ˆ

ˆ

β

β
M  be the m×p 

matrix containing the least-squares estimations and let Z:= 

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−

−

Tm

T

T

T

ββ

ββ

)(

)1(

ˆ

ˆ

M .  If (1) and (2) 

hold true, then (3) leads to the following model: 

Y=1m Tβ + Z    with    EZ = 0, Cov(vec(ZT))=Im ⊗ Σ  and β ∈Rp  unknown 

parameter vector. 
(4) 

Thereby 1m∈Rm  is the vector whose components are all equal to 1,Im is the m×m 

identity matrix, “ ⊗ ” denotes the Kronecker-Product and “vec” is the well-known vec-

operator (Harville, 1997).  
Conversely, if (2) is false and (1) together with (A1)–(A2) still holds true, then a 

change-point occured and (4) does not hold. Therefore we can test hypothesis (2) by 
checking the linear model (4). Bischoff and Gegg (2010) formulated a procedure which can 
be used to check a more general model by using multiple partial sum processes. Below we 
apply this method to our problem. 

 
3. Residual Partial Sums Process 
 

In order to test the hypotheses (2), we investigate the partial sums of the p-
dimensional residuals in model (4). For that we use the partial sum operator Tm, which 
embeds a vector a = (a1,…,am)T∈  Rm in the space C([0,1]) by 

1 mz

m i mz 1
i 1

m

a
T (z) a (mz mz )a , z [0,1],

a

⎢ ⎥⎣ ⎦

+⎢ ⎥⎣ ⎦
=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ = + − ∈⎢ ⎥⎣ ⎦⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑M  

where ⎣ ⎦ }|max{: zlZlz ≤∈=  and 
0

ii 1
a 0.

=
=∑  Figure 1 shows the resulting 

graph of the partial sum operator Tm applied to a vector mRa ∈ . The partial sum operator 

m pT ×  embeds 
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mmpm RRR ××=× K  in the space [ ]( ) [ ]( ) [ ]( )1,01,0,1,0 CCRC p ××= K  . 

We define m pT × with the help of mT . For this, let A ∈  R m p× be an m p×  matrix with 

columns a(1),…,a(p), then: 

[ ]( ) [ ]( )
[ ]⎪⎩

⎪
⎨
⎧

∈=
××→

×

×

× .
1,0,)))((,),)((())((

1,01,0
: )()1( zzaTzaTzATA

CCR
T p

mmpm

pm

pm Ka

K
 

The partial sum operator has gained a lot of interest especially because of the well-
known Donsker-Theorem for an iid sequence of centered random variables. Iglehart (1968) 
formulated a vector-valued version of this theorem: 

 
Theorem 1 

Let i i 1( ) ≥ξ  be an iid sequence of random variables with values in pR  and  

E 1ξ = 0,  Cov(vec(ZT)) = Im ⊗Σ  

with Σ positive definite. Then: 
TT

1
D1/2 p

m p
T
m

1 T B
m

−
×

⎛ ⎞⎛ ⎞ξ
⎜ ⎟⎜ ⎟

Σ ⎯⎯→⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ξ⎝ ⎠⎝ ⎠

M     with m ,→ ∞  

 
Figure1.  Partial sum process ( )mT a  

 

whereas Bp is the p-dimensional Brownian motion with independent components and 

„ D⎯⎯→  ‘‘means weak convergence.  

The residuals of the linear model (4) are correlated and through this they do not 

fulfil the iid assumption of the preceding theorem. However, Bischoff and Gegg (2010) used 

the vector-valued version of the Donsker-Theorem to establish the p-dimensional residual 
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partial sums process in case of a multivariate linear model with multiple response. It is a 

projection of the Brownian motion pB  on a certain subspace. As a special case, we state the 

following result: 

 

Theorem 2 

Consider model (4), i.e.Y = 1m βT + Z   with   EZ = 0, Cov(vec(ZT)) = Im ⊗  Σ  and β 
pR∈  unknown parameter vector. 

Then, under “ (1) (m)
0H : ...β = β = = β ”, we have for the residuals ˆY Y−  and 

m ,→ ∞  

D1/2 T p
m p 0

1 ˆT (Y Y) B ,
m

−
×Σ − ⎯⎯→  (5) 

where p
0B  is the p-dimensional Brownian bridge. 

 

4. Test for Linear Profile Data 

 
Under the null hypothesis the residual partial sums limit process (cf. Theorem 2) is 

given by p
0B , the so called standard p-dimensional Brownian bridge on [0,1]. An intuitive 

one-dimensional test statistic is the maximum of the Euclidean norm of the p-dimensional 

process. To be more precise let  

1/2 T
m m p

1 ˆR (t) : T (Y Y) (t),
m

−
×= Σ −          t [0,1].∈  

Then our proposed test statistic is [ ] ||)(||max 1,0 tRmt∈ , where |||| ⋅  is the Euclidean 

norm in pR , i.e. ( ) ∑
=

=
p

i
i

T
p xxx

1

22
1 ||,,|| K . Because of the "Continuous Mapping Theorem" 

(Billingsley 1999), we have the following convergence under 0H : 

|||||||| pD
m BR ⎯→⎯            for m .→ ∞  (6) 

Note that the limit process is the well-known Bessel bridge. In order to check (4) we 

apply a test of Kolmogorov-Smirnov type to the Bessel bridge and we get an asymptotic size 

α -test, (0,1),α ∈  by 

Reject [ ] αktRH mt >⇔ ∈ ||)(||sup 1,00 . 

Thereby 0ακ >  is a constant such that [ ]( ) .||)(||sup 01,0 αα =>∈ ktBP p
t  Note that 

for given α, the corresponding value ακ  can be explicitly calculated. Kiefer (1959) gives a 

closed form for the cumulative distribution function of the Bessel bridge. We cite from his 

article concrete values for ακ  in case p = 2,...,5 and α  = 0.1, 0.05, 0.01 in Table 1: 
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Table 1.  Critical values for the p-dimensional Bessel bridge 

ακ  p = 2 p = 3 p = 4 p = 5 

=0.1 1.45399 1.61960 1.75593 1.87462 

=0.05 1.58379 1.74726 1.88226 2.00005 

=0.01 1.84273 2.00092 2.13257 2.24798 

 
5. Numerical Example 
 
5.1. Profile Data and Parameter Estimation 

As a concrete example of application, we study the situation, that a change takes 
place after profile 4 of m = 6 profiles – both in the intercept and in the quadratic term in a 
quadratic model. For each profile, we simulated n = 10 observations according to 

( ) ( ) ( ) 2
1 2 2 , 1,...,10, 1,...,6.= + + + ⋅ = =j j j

i i i ijW x x i jα α ε  

Thereby 

• ( j)
1 0α =   for  j = 1,…,4 and ( j)

1 1α =  for  j = 5, 6  (shift in intercept) 

• ( j)
2 0.1α =  for  j =1,…,4 and ( j)

2 0.12α =  for  j = 5, 6  (shift in quadratic term) 

• 1 2 3 10
10 20x 0, x , x ,..., x 10,
9 9

= = = =  

• ijε  is a sequence of standardized iid random variables having lognormal distribution. 

 
Figure 2.  Simulated profiles   (color in plot: black) and   (grey). 

 
Figure 2 shows the simulated profile data under study. Let  
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X : = pmR
xx

xx
×∈

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

2
1010

2
11

1

1
M  

be the design matrix for each profile. Consequently, we have p = rank(X) = 3. We 
fit for each profile the model 

( j)W =  X 

( j)
0

( j)

( j)
2

,
⎛ ⎞β
⎜ ⎟

+ ε⎜ ⎟
⎜ ⎟β⎝ ⎠

M  (7) 

where ( )jε  is a random vector with E ( ) 0jε =  and  Cov ε(j) = σ2 Ip. We estimate the 

coefficients by least squares method and get the values  shown in Figure 3. 

With these estimations, we can fit model (4) with   

Furthermore, by model (7), we get for each profile j an estimation for the variance, 
namely the usual variance estimation 

T2 ( j)
j

1ˆ : (W (
10 3

σ =
−

I3 – X (XT X)-1 XT) ( j)W ), j 1,...,6.=  

Consequently, with our assumptions (A1)-(A2), we can estimate 2σ  by 
m 6

2 2 2
j j

j 1 j 1

1 1ˆ ˆ ˆ: .
m 6= =

σ = σ = σ∑ ∑  

In case of the simulated data mentioned above, we have 2ˆ 3.004228.σ =  

 
Figure 3.  Estimations for parameter vector  (black) and  (grey) 
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5.2. Test for a Change-Point 
Now we are in the position, to calculate our proposed test statistic. Therefore, with 

T

T

(1)

(6)

ˆ

Y :
ˆ

⎛ ⎞β
⎜ ⎟

= ⎜ ⎟
⎜ ⎟β⎝ ⎠

M  and 36
^

×∈ RY being the matrix of estimated values in (4), we get: 

6
1R (t) :

ˆ6
=

σ
(XT X)1/2

T
6 3

ˆT (Y Y) (t), t [0,1].× − ∈  

Then we can determine the value of our test-statistic [ ] ||)(||max 61,0 tRt∈  and 

compare with the critical values given in Table 1. 

Figure 4 shows the process ||)(|| 6 tR for the data set under study. We get a value 

for the test statistic of 2.01976 and so we can reject the null hypothesis  “ 0H  no change-

point'' even for 0.01α =  since the corresponding critical value is  0.01k 2.00092.=   

Note that, by using the same random numbers in case “no change-point'' (i.e. 
( j) ( j)
1 20, 0.1α = α =  for all j = 1,…,6), the test statistic is 0.5036005 and so we consistently 

cannot reject the null hypothesis to usual sizes. 
Consequently, our proposed method leads to good results even in the case of small 

shifts (see Figure 2) and also in case of non-normal error terms (in the example, we have 
used log-normally distributed error terms). 

 
Figure 4.  ||)(|| 6 tR  with the true position of the change-point (dotted grey line) 
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