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Abstract: In this paper we introduce the ISW (Interval Sliding Window) algorithm, which is 
applicable to numerical time series data streams and uses as input the combined Hoeffding 
bound confidence level parameter rather than the maximum error threshold. The proposed 
algorithm has two advantages: first, it allows performance comparisons across different time 
series data streams without changing the algorithm settings, and second, it does not require 
preprocessing the original time series data stream in order to determine heuristically the 
reasonable error value. The proposed algorithm was implemented in two modes: off line and 
online. Finally, an empirical evaluation was performed on two types of time series data: 
stationary (normally distributed data) and non stationary (financial data). 
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1. Introduction 
 

Time series data streams are ubiquitous in finance, meteorology and engineering. 
They are an application area of growing importance in the data stream mining research. For 
example, sensors generate one million samples every three minutes [13], therefore one of 
the primary purposes of data stream research boils down to fast and reliable time series data 
streams segmentation or dimensionality reduction techniques. These techniques are used in 
many areas of data stream mining as: frequent patterns finding, structural changes and 
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concept drifts detection  [4], time series classification and prediction [13], time series 
similarities searching [8], [15], etc. The main principle of segmentation algorithms concludes 
in reducing the time series dimensionality by dividing the time axis into intervals behaving 
approximately according to a simple model. A good time series data stream segmentation 
algorithm has on-line, fast, accurate and comparable with other algorithms structure. For 
example the Sliding Window algorithm  [8] on the one hand is online, very fast and relatively 
simple for using in online segmentation applications but on the other hand, it sometimes 
gives poor accuracy and does not allow to perform online multivariate segmentation.  

The segmentation problem can be defined in following way: first, given a time 
series data stream to produce the best representation such that the maximum error for any 
segment does not exceed some user specified confidence level error threshold. It is 
important to add, that using a combined relative parameter such as Hoeffding bound  [5] 
confidence level will allow to evaluate an online multivariate segmentation and second, to 
construct a user friendly segmentation application which will evaluate and compare the 
proposed online segmentation algorithms in real time. As we shall see in later sections, the 
state-of-the-art segmentation algorithms do not meet all these requirements. 

The rest of the paper is organized as follows. In Section 2, we provide a literature 
review of three state-of-the-art online piecewise linear segmentation algorithms. In Section 
3, we provide a methodology for improving the existing state-of-the-art online segmentation 
algorithms. The proposed methodology based on Hoeffding bound error estimation, which 
uses a relative probability parameter instead of maximum error nominal parameter and 
allows performing online multivariate segmentation.  Section 4 briefly demonstrates a real-
time segmentation application. Finally, in Section 5 and 6 we provide brief and meaningful 
empirical comparison of the proposed algorithms and suggest final conclusions. 
 

2. Related Studies 
 

Several high level representations of time series have been proposed in the 
research literature, including Fourier Transforms  [8], Wavelets  [1], Symbolic Mappings  [3], 
 [17] and Piecewise Linear Approximation (PLA)  [20], [1],  [4],  [6], [5], [7],  [10],  [11],  [14],  [16], 
 [18],  [19],  [21]. In this work, our attention will confine to PLA, perhaps the most frequently 
used representation in continuous time series data streams. Obviously, all piecewise linear 
segmentation algorithms can also be classified as batch or online  [20].  The problem 
discussed by Shatkay and Zdonnik, [17], Keogh et al.,  [9], Biffet and Kirkby [1] is actually 
how to build online, adaptive, fast and accurate algorithm for piecewise linear segmentation 
of time series data stream, because on the one hand, the main problem of online Sliding 
Window algorithm [2], [7] concerns in its poor accuracy  [18],  [21] and its inability to look 
ahead. On the other hand the offline accurate Bottom Up  [9] algorithm is impractical or may 
even be unfeasible in a data mining context, where the data are in the order of terabytes or 
arrive in continuous streams. This problem is very important because for scalability purposes 
the proposed piecewise linear segmentation algorithm needs to capture the online nature of 
sliding windows and yet retain the superiority of Bottom Up algorithm. 

Keogh et al.  [9] introduced new online Sliding Window Bottom Up (SWAB) 
algorithm which scales linearly with the size of the dataset, requires only constant space, 
produces high quality approximations of the initial time series data, and can be seen as 
operating on a continuum between the two extremes of Sliding Windows and Bottom-Up. 
The authors have shown that the most popular Sliding Window approach generally produces 
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very poor results, and that while the second most popular approach, Top-Down, can produce 
reasonable results, it does not scale well with massive time series stream data.  The main 
problem with the Sliding Windows algorithm is its inability to look ahead, lacking the global 
view of its offline (batch) counterparts. The Bottom-Up and the Top-Down  [7] approaches 
produce better results, but are offline and require the scanning of the entire data set. For 
example, the SWAB  [9] algorithm has three nominal input parameters, which need to be 
defined carefully by the user in order to obtain an accurate segmentation model. Often the 
user obstructs to determine for the value of the maximal error threshold, because the data 
has very noisy non-stationary behavior. Therefore, in aim to produce an accurate 
segmentation model, the user needs to perform the preprocessing of the obtained data or to 
perform a time consuming experiment design. Second, the inner loop of the SWAB algorithm 
simply invokes the Bottom-Up algorithm each time. This results in some computation 
redundancy and increases the computational complexity of algorithm. Second, the 
performance of the Sliding Window and SWAB algorithms depends on the value of maximal 
error. As maximal error goes to zero the Sliding Window and SWAB algorithms have the 
same performance, since they would produce multiple short segments with no error. At the 
opposite end, as the maximal error becomes very large, the algorithms once again will all 
have the same performance, since they will simply approximate a data stream with a single 
best-fit line.  

However, most works along these research lines that we know of  [1],  [19] and  [9] 
recommend to test the relative performance for some “reasonable value” of maximal error, 
a value that achieves a good tradeoff between compression and fidelity. Because this 
“reasonable value” is subjective and dependent on the data mining application and the data 
itself, they did the following. First, they chose a “reasonable value” of maximal error for each 
dataset and then bracketed it with 6 values separated by powers of two. The lowest of these 
values tends to produce an over-fragmented approximation, and the highest tends to 
produce a very coarse approximation. Second, they chose performance in the mid-range of 
the 6 values which by their opinion should be considered most important. Obviously, the 
maximal error calculation routine proposed by and  [8],  [9] and  [15] are heuristic, requires 
multi pass computational efforts and have no rigorous guarantees of performance.  

We therefore, introduce an improved algorithm combining the online nature of the 
sliding window algorithm and time series data stream, decreasing the number of input 
parameters and decreasing computational redundancy and complexity. We call the proposed 
algorithm ISW (Interval Sliding Window) algorithm. 
 

3. Methodology 
 
3.1. The ISW Segmentation Algorithm 

The proposed ISW algorithm derives the maximal error by defining appropriate 
confidence level (e.g. 95%) and using Hoeffding bound one pass calculation. In fact, a 
similar approach was used in the VFDT decision tree induction algorithm introduced in 

Hulten and Domingos  [13]. Suppose we have segment A  with range AR  and An  

observations, and segment B  with range BR  and Bn  observations, which belong to a 

sliding window S  of time series T . Assume that Ax  and Bx  are the sample means of 

segments A and B, respectively.  The new merged segment AB  has range ABR , ( BA nn + ) 
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observations and sample mean ABx  equals BBAA xcxc + , where Ac  and Bc  equal to 
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Proposition 1: The Hoeffding bound states that with confidence level of δ  the 

true mean of the merged segment AB  lies in the interval  ABABx ε±   where: 
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From this theorem we can derive absolute error ABε  with confidence level of δ .  

According to Motwani and Raghavan [12] the Hoeffding bound ABε  represented in 

(1) is independent of the distribution generating the examples. This bound is applicable to all 
situations where observations are independent and generated by a stationary distribution. 
Important to note, that Hoeffding bound is addictive, its error is absolute and it does not 
require calculation of expected means of two merged segments. It is easy to show, that when 

the confidence level 1=δ , the Hoeffding error value is equal to zero meaning that the 

observed and the segmented time series data streams are the same. 
The DASWI algorithm works in the following way: each time a new observation 

arrives the algorithm calculates the Hoeffding bound using (1) and a user defined confidence 

level δ  then in case the new calculated error is greater than the previously calculated 

Hoeffding bound, the algorithm starts a new sliding window, otherwise it continues with the 
current sliding window. This incremental technique on the one hand is more sensitive to data 
stream concept drift changes and on the other hand allows to create relatively large 
segments when the data stream is stable and therefore to decrease significantly the running 
time of the proposed algorithm.  The pseudocode for the ISW algorithm is shown in Figure 1. 

 
Data stream, DS 
Confidence Level,  δ  Input: 
Sliding Window size, SW 

Output: ISW Segmented data stream. 
anchor = 1; 
While not finished segmenting time series 
    i = 2; 
--- Bound and Error Calculation 
While Model_error < Hoeffding_Bound 
   Model_Error(Segment[anchor: anchor + i ]) 
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   Hoeffding_Bound(Segment[anchor], δ ) 
    i ++; 
    New_Segment = Create_Segment(T[anchor: anchor + (i-1)] 
    Segment = Merge(Segment, New_Segment) 
    anchor = anchor + i; 

Figure 1. The ISW algorithm pseudocode 
 
Example 1. The following numerical example briefly explains main calculation 

procedure of the ISW algorithm. Suppose that the current sliding window segment includes 
four observations: 1, 2, 3 and 4 (Table 1). Now, a new, fifth observation arrives and the ISW 
algorithm checks whether to start a new segment or to continue updating the previous one. 
The current segment range equals 0.8 (4.8-4.0), the number of observations is 4 and with 
the user specified confidence level of 95% the value of Hoeffding bound equals 0.06. Now, 
with the aid of the new, fifth observation we will recalculate the linear interpolation model 
error. The new model error equals 0.025 and it is lower than the calculated Hoeffding 
bound therefore the algorithm increases the current segment. 

 
Table 1. Observations for ISW numerical example 

n 1 2 3 4 5 (new) 

Obs. Value 4.1 4 4.4 4.8 4.7 

Segment 1 1 1 1 2 

 

 
4. Experimental Results 
 

In aim to compare accuracies of the proposed algorithms to the traditional 
algorithms SW   [8] and SWAB  [9] the following validation experiment was performed. First, 
three time series data streams used in  [9] were selected (ECG, Space Shuttle and Radio 
Waves), after that the mean square error accuracies of algorithms SW and SWAB were 
evaluated with zero error threshold value. Second, on the basis of evaluated accuracies the 
appropriate confidence levels of the proposed algorithms were retrieved. Finally, Table 2 
organizes the obtained results and clearly demonstrates that our proposed methods don’t 
inferior to traditional SW and SWAB algorithms reported accuracies. 

 

Table 2. Comparison between SW and SWAB algorithms 
Dataset ECG Space Shuttle Radio Waves 
ISW 95% 90% 93% 
ISWAB 95% 92.5% 95% 

 

Our experimental study is aimed at estimating the accuracy and comparing the 
performance of the proposed algorithms. The first part was focused on stationary time series 
data streams (TSDS) and the second one was focused on non stationary data streams. The 
stationary data stream was generated from two synthetically distributed normally distributed 
time series ND25 and ND100 whereas the non-stationary data streams was obtained from 
two Israel’s daily financial indexes TA25 and TA100 [20] . These finance indexes behavior 
strongly depends on time and therefore they demonstrate non stationary behavior.  The few 
descriptive statistics for the four selected time series is shown in Table 3. 
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Table 3. Descriptive statistics 
TSDS N Max Min Avg. St.Dev. 
ND25 1,228 1,693.82 -29.21 748.06 244.32 
ND100 1,228 1,426.14 -22.79 756.70 225.00 
TA25 1,228 1,237.13 333.90 748.06 244.32 
TA100 1,228 1,189.04 341.04 756.70 225.00 
 

The ND25 time series is similar to TA25 because their averages, standard 
deviations and lengths are equal. Same thing is right regarding to TA100. Figure 2 
demonstrates the ISW algorithm evaluation on the four collected time series. The blue 
columns point out the non stationary data as financial indexes and red stationary data e.g. 
normal processes ND25 and ND100. The most obvious result is that ISW produces more 
accurate results2 on stationary data (red columns) when the user specified confidence level is 
greater than 80%.  In case of non stationary data streams the ISW algorithm produces stable 
but less accurate results. This stable quality pattern results from the ISW algorithm ability to 
detect mean concept drifts in time series data stream behavior. The remaining error will be 
caused by other non stationary elements, e.g. non stationary variance or/and non-stationary 
auto covariance.  

 

 
Figure 2. The ISW algorithm accuracy 
 

Figure 2 demonstrates the performance results of ISW algorithm. Actually, this 
figure Y axis shows the number of created segments when it is obvious that a large number 
of segments increases the evaluation time of algorithm and vice versa. As previously 
mentioned the ISW algorithm produces good accuracy results for stationary data, i.e. red 
columns accuracies range from 0% to 10% when confidence level is greater than 80%.  
 

5. Conclusions 
 

This study has highlighted a number of limitations in existing state-of-the-art online 
piecewise linear segmentation approaches: Sliding Window (SW) and SWAB. First, the new 
relative parameter of confidence level was used instead of nominal input parameter of 
maximal error threshold. This parameter has two advantages: first is that the user does not 
need to preprocess the original time series data stream in aim to determine the reasonable 
maximum error value and second is that the proposed technique allows to perform cross 
comparisons between different time series data streams. Also, the implementation of new 
real time application was performed. Finally, we have performed an empirical comparison of 
the proposed time series segmentation algorithms on two types of time series data: 
stationary (normally distributed data) and non-stationary (financial data).  
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1 Reproducible Results Statement:  
In the interests of competitive scientific inquiry, all datasets and code used in this work are available, together with a 
spreadsheet detailing the original results, by emailing the first author. 
 
2 Each experimental accuracy result (i.e. a chart column) is defined by aid of mean square error measure and after 
that normalized by dividing by the accuracy of the worst algorithm on that experiment.   
 


