

Applications of Quantitative Methods to e-Commerce

223

WEB SERVICES INTEGRATION WITH DISTRIBUTED

APPLICATIONS

Marilena DUMITRACHE

PhD Student, Faculty of Cybernetics Statistics and Economic Informatics, Academy of
Economic Studies, Bucharest, Romania

E-mail: dm.marilena@gmail.com

Stelian DUMITRA

PhD Student, Faculty of Cybernetics Statistics and Economic Informatics, Academy of
Economic Studies, Bucharest, Romania

E-mail: stelu20d@yahoo.com

Mircea BACIU

PhD Student, Faculty of Cybernetics Statistics and Economic Informatics, Academy of
Economic Studies, Bucharest, Romania

E-mail: mircea.baciu@gmail.com

Abstract: A Web service is a distributed application component. Web services distributed
computing model allows application-to-application communication. There is nothing
fundamentally new about the basic concept and the related technologies. The innovative thing
about this is the reach of Web services and its ubiquitous support by literally all major vendors.
Most likely, heterogeneity will at the end no longer be an obstruction for distributed
applications. This paper describes the concept of service-oriented architecture (SOA) in
conjunction with the Web services technology and covers the core Web services specifications
which form a powerful and robust foundation for building distributed systems. It is presented a
case study regarding the integration of the Web services with the SAP system for handling
interoperability issues.
The conclusions and the future proposed developments are presented in the end of the paper.

Key words: distributed application; web service; sap; protocols; security

Applications of Quantitative Methods to e-Commerce

224

1. Introduction

Because of the level of the application’s integration, the Web services have grown
in popularity and are beginning to improve the business processes. In fact, the Web services
are being called the next evolution of the Web [1].

Web services provide a promising framework for development, integration, and
interoperability of distributed software applications. Wide-scale adoption of the web services
technology in critical business applications will depend on the feasibility of building highly
dependable services. Web services technology enables interaction of software components
across organizational boundaries. In such distributed environment, it is critical to eliminate
errors at the design stage, before the services are deployed. Web services provide a
promising framework for development, integration, and interoperability of distributed
software applications. Wide-scale adoption of the web services technology in critical business
applications will depend on the feasibility of building highly dependable services.

The remainder of the paper is structured as follows: section 2 provides information
about service-oriented architecture (SOA) in conjunction with the Web services technology
and the core Web services specifications; section 3 describes a case study on web services
and associated key technologies. The application shows how to integrate Web Services on
different platforms and how they allow the interoperability between applications running on
these platforms, using the specific web services protocol stack presented in section 2. Section
4 concludes the paper and presents future proposed developments.

2. Service Oriented Architecture vs. Web Services

Distributed software systems, and the interactions between components within

these systems, can exhibit a high level of complexity and lead to difficulty in the assessment
of what system behavior is possible in multiple scenarios [2].

2.1. SOA
Nowadays, service-oriented architecture (SOA) and web services that enable

flexible and loose integration of applications within and across enterprises have become one
of the most phenomenal subjects both in academia and in industry.

SOA is a software architectural concept that defines the use of services to support
the requirements of software users. It is a system for linking resources on demand. In an
SOA, resources are made available to other participants in the network as independent
services that are accessed in a standardized way. This provides for more flexible loose
coupling of resources than in traditional systems architectures [3].

The SOA model treats three main elements that act as a find–bind/invoke-execute
cycle as shown in Figure 1. The service provider offers a given service and publishes service
description in a service registry. The service requester queries the registry to find a certain
service. If founds, it retrieves the location of the service and binds to the service endpoint,
where the requester can finally invoke the operations of the service [4].

Figure 1. SOA triangle Figure 2. Architecture of the Web
Services framework

Applications of Quantitative Methods to e-Commerce

225

SOA-based applications are distributed multi-tier applications that have
presentation, business logic, and persistence layers. Services are the building blocks of SOA
applications. While any functionality can be made into a service, the challenge is to define a
service interface that is at the right level of abstraction. Services should provide coarse-
grained functionality [5].

Within SOA, web service providers describe their services in WSDL to designate
what they are and how to invoke them, and then publish these descriptions via a public
UDDI registry. On the other hand, a service requester subscribes those WSDL descriptions
and selects such services that satisfy an integration need. The requester often has to
compose several services to accomplish complex tasks. Then, the requester invokes selected
web services using XML/SOAP messages. All these can be seen in figure 2 [6].

2.2. Web Services
The client’s basic needs over time don’t really change, but the essential tools that

are required in order to fulfill these needs are constantly evolving. Not long ago in nodes,
which were present in distributed systems, existed the need to control the applications in a
distributed manner. [7] Basically if an application that was running in a node happened to
go down, that application was suppose to be restarted at another node. The creation of
these types of distributed applications was nearly impossible. These days, it’s routine and in
fact there are many choices. The essential problem is not if it is possible for the components
of distributed applications to communicate between them, but to choose the best technology
in order to hold them together.

For example the .NET Framework, introduces good support for the two ways to
architect a distributed application. Remoting is the architectural descendant of DCOM,
allowing an object on one computer to make proxy-based calls to the methods of an object
on another computer. Web services use a completely different technique, based on open
XML and SOAP protocols, WSDL and UDDI, which are used to invoke methods on a remote
machine. XML is used to tag the data, SOAP is used to transfer the data, WSDL is used for
describing the services available and UDDI is used for listing available services.

"Web services are dynamic programs that enable data and applications to interact
with each other on the Web through ad hoc connections—without any human intervention
what so ever", said Sidharth, technical product manager for identity management at Sun. A
Web service is normally intended to be a distributed application component. Its clients are
other applications, not human beings. A Web Service is any piece of code that can
communicate with other pieces of code via common Internet technology. A Web Service is a
"virtual component" that hides "middleware idiosyncrasies" like the underlying component
model, invocation protocol as far as possible.

The main advantages of Web services are flexibility and versatility: they support a
lot of architecture and are independent of platforms and designs. Web services are built on
several technologies that work in conjunction with emerging standards to ensure security
and manageability, and to ensure that Web services can be combined to work independent
of a vendor. Also Web services win on ease of development and interoperability.

Web services distributed computing model allows application-to-application
communication. For example, one purchase-and-ordering application could communicate to
an inventory application that specifies the items that need to be reordered or a Web service
from a credit bureau which requests the credit history from the loan services, for prospective
borrowers. In both cases, the data interaction must be protected to preserve its
confidentiality.

Web Services are considered to be the future of the Internet. They are independent
of the platform and also of the technology, but in reality they are XML/SML collections of
standards which allow the interaction between systems (programs). Heather Kreger, one of
the IBM’s lead architects for SOA Standards which developed the standards for Web services,
thought that Web Services are like an interface which describes a collection of operations,
network accessible throughout the XML standard messages. Web Services have the main role
to access different services and different data from different machines, and so they offer to
the clients a single public interface.

Applications of Quantitative Methods to e-Commerce

226

2.3. The Web Services Architecture
Figure No. 3 describes the architecture of the Web Services. The architecture of the

Web Services resembling with the TCP/IP reference model is presented in five levels:
Network, Transport, Packing, Description and Discovery. Each level is represented by
different basic protocols. The network level concurs with the network level from the TCP/IP
[8] reference model, offering basic communication, addressing and rooting. Above the
network level there is the transport level that offers the opportunity of direct communication
between the existing applications from the network. The most important protocols are
TCP/IP, UDP, FTP, HTTP, SMTP, Jabber [9].

Figure 3. Web Services Architecture

The web services can be implemented above any of the other protocols. The
Packing level, which is above the Transport level, "packs" the data in the XML format – a
format known by all the other parties involved in communication. XML and SOAP – Simple
Object Access Protocol, are basic protocols of the Packing Level and are produced by the
W3C standard.

2.4. SOAP – Simple Object Access Protocol
The role of SOAP is to encode the data in XLM format and to make the message

exchange possible between the applications in XML format. It uses the model request-
answer, where the request is placed by the SOAP client, and the answer is given by the
service provider, named SOAP server. Everything is shown in the below situated Figure 4.

Figure 4. SOAP’s basic request-response model

The protocol is used both to send and to receive messages from the Web Service.

One advantage is to encapsulate the functionality of the RPC (Remote Procedure Call) using
the extensibility and the functionality of the XML. SOAP defines a format for both messages,
and a model for their processing by the receiver. In addition, SOAP – may also define a
framework for protocol links, so that the SOAP messages can be transferred using the
protocol stack from the transport level.

A SOAP message consists of a SOAP envelope [10], the root of the message, which
in turn contains an optional header, and, necessarily, a body, independent of each other.
SOAP message passes on its way from sender to receiver through many SOAP nodes, which
can change the message. All the SOAP nodes form SOAP message path.

The Header contains general information about security – authentication and
session, and about the message processing by the intermediary nodes. The data regarding
the authentication usually is encrypted using WS-Security standard. The tag - "body" never
misses from a SOAP message. Most of the times it is the last child of the "Envelope" node
and it contains the information that is going to be transferred between applications (Web
service input or output).

Applications of Quantitative Methods to e-Commerce

227

In Figure 5 it is shown an example of a SOAP message.

Figure 5. SOAP Message

In the above example, in the SOAP envelope the XML namespace and the type of

the used message encoding are not specified. The Header node is missing in this example,
and the body node contains the result of a "GetMaterials" method, which is a serialized Data
Table type object in XML format.

SOAP was originally an acronym for Simple Object Access Protocol, But since SOAP
Version 1.2 (SOAP 1.2 Part 0, 2003; SOAP 1.2 Part 1, 2003) it is technically no longer an
acronym.

2.5. WSDL – Web Services Description Language
The description level, located above the packing level, is represented by the WSDL

protocol, being based on the XML standard.
WSDL is a language written in XML [11], used as a model for describing Web

services. WSDL reached version 2.0, but in version 1.1 the D stood for Definition. Version
1.2 of WSDL was renamed WSDL 2.0 because of the major differences between the two
versions.

2.5.1. New features in WSDL 2.0
Nowadays, W3C recommends using WSDL 2.0 [11], but the problem is that it is not

fully supported in all developing environments. The main differences between the two
versions are:

• in WSDL 2.0 there’s binding to all the HTTP request methods, whereas in
WSDL 1.1 only the GET and POST methods;

• in WSDL 2.0 further semantics were added to the description language;
• WSDL 2.0 offers better support for RESTful web services;
• renaming of PortTypes (WSDL 1.1) into Interfaces (WSDL 2.0);
• renaming of Ports (WSDL 1.1) into Endpoints (WSDL 2.0);
• WSDL 2.0 can be implemented in a much simpler way.

WSDL is used in combination with SOAP and the XML schema representing the web
service description. The main purpose of WSDL is that it leverages the connection between a
client program and a web service, by determining the server available operations.

2.5.2. WSDL Components

Port/Endpoint – defines the address or connection to a web service; usually, it is
represented by a simple URL.

Service – consists of a set of ports/endpoints, meaning the system functions
exposed to the web based protocols.

Binding – defines a concrete message format and transmission protocol which
may be used to define a port/endpoint.

PortType/Interface – defines a web service, all the operations that can be
performed, and the messages used to perform the operation.

Operation – is an interaction with the service (a method) formed by a set of
messages exchanged between the service and the other programs involved in the
interaction.

Type – describes the data type definitions that are relevant for the exchanged
messages.

Components 1-3 represent the concrete section of a WSDL, and components 4-6
represent the abstract section.

Applications of Quantitative Methods to e-Commerce

228

In Figure 6 it is shown an example of a WSDL message.

Figure 6. Example of a WSDL

2.6. UDDI – Universal Description, Discovery and Integration
UDDI represents a platform-independent framework [10], based on Extensible

Markup Language (XML), a directory service where businesses can register and search for
web services. UDDI is meant to be open for businesses, enabling them to publish and
discover services, and to discover the interaction between them over the Internet.

2.6.1. UDDI – Characteristics of UDDI [8]
UDDI stores information about web services, it consists of web services interfaces

written in WSDL. UDDI can be interrogated via SOAP messages and provides access to
WSDL documents describing certain protocol bindings and message formats to interact with
the web services. UDDI terminology contains also the following:

• Nodes – servers which support UDDI specifications nodes belong to a
registry;

• Registries – collections of one or more UDDI nodes.

2.6.2. Benefits of UDDI
All businesses can benefit of UDDI because it solves the following problems:

• Descovering the right business from millions of online businesses;
• Once the preferred business is discovered, UDDI enables how to enable

commerce;
• New customers cand be reached and access to current customers can be

increased;
• Market reach and offerings can be expanded;
• Barriers are removed to allow rapid participation in the global Internet

economy;
• Services and business processes are programatically described in a single,

open, and secure environment.

Applications of Quantitative Methods to e-Commerce

229

In Figure 7 it is shown an example of a UDDI message.

Figure 7. Example of a UDDI

Although the basic specifications of Web Services: XML, SOAP, WSDL and UDDI

provide an acceptable level of interoperability and integrity [11] a significant effort has made
to increase the applications area of Web Services, and to address to higher various issues
from the real world. Thus new specifications emerged for Web Services’ reliability, security,
metadata management, transactions and orchestration, all of which have extended the Web
Services’ architecture. Among the new specifications it is worth to be mentioned:

• Metadata Management: WS-Addressing, WS-Policy, WS-MetadataExchange;
• Reliable Messaging: WS-Reliability, WS-ReliableMessaging, WS-Eventing,

WS-Notifications;
• Security: WS-Authorization, WS-SecurityPolicy, WS-Trust, WS-

SecureConversation, WS-Federation, WS-Privacy, XML Encryption, XML Signature;
• Transactions: WS-Transactions family(WS-AtomicTransaction, WS-

BusinessActivity, WS-Coordination), WS-Composite Application Framework(WS-CAF);
• Orchestration
• Choreography

3. Case study regarding the integration of Web Services on different
platforms

This section describes a case study on web services and associated key
technologies, offering practical tests in order to support the previous presented. The
application shows how to integrate Web Services on different platforms and how they allow
the interoperability between applications running on these platforms, using the specific web
services protocol stack presented in previous sections.

The problem we have modeled is as follows: "A company that sells used hardware
in the fields of retail and food industry wants to integrate some mobile terminals, which are
going to be used in order to scan the bar codes of the store’s hardware equipments with an
ERP system, in our case SAP."

Using a mobile terminal [12], we want to make different types of storage-specific
operations, such as: reception, delivery and material’s inventory.

The solution we present for integrating the mobile devices with SAP - consists in
developing a web service on a .NET platform, that can be used as a proxy between the two
platforms.

Applications of Quantitative Methods to e-Commerce

230

Figure 8 presents the data flow between these distributed systems, where the
interoperability occurs based on the Web services.

Figure 8. Interfacing .NET Applications with SAP via Web Services

Brief description of the scheme.
Integrated with SAP Business Object Repository (BOR) [13] is an object-oriented

repository that contains SAP objects and SAP interfaces, and also their components, such as
methods, attributes and events. In SAP Web Application Server, SOAP runtime provides us
the mechanism of using SOAP protocol to call and access the RFC functions (Remote
Function Call) [14] via HTTP. A web service in SAP can be seen as an RFC function.

The interoperability between the Microsoft .NET platform and the SAP system is
done with the help of a component, the SAP Connector for Microsoft .NET [14]. It supports
SAP Remote Function Call (RFC) and Web Services and it allows the development of various
applications on the .Net platform. The Proxy class generation, which enables the calling for
web service (RFC function) is based on WSDL. In this case, it can be said that SAP connector
acts as a proxy between SAP and the .Net platform.

In order to integrate the mobile terminal with SAP, it has been developed a web
service that becomes the wrapper class for the SAP connector and also it becomes a proxy
between the application from the terminal and SAP.

In order to integrate the Web Service with both distributed systems some steps must
be taken:

Stage 1: Developing and publishing the Web Services
Using the developing platform Visual Studio.NET, a series of appropriate methods

for the data exchange is constructed. In this initial step the .Net connector is integrated to
SAP. If the SAP authentication was successfully done, the description of the available RFC
functions it is brought from SAP with the help of UDDI and WSDL. Since WSDL –is based on
the XML standard the description of the functions is brought into a file with a .sapwsdl
extension in XML format. Based on the WSDL and on the .NET connector, the proxy class,
that contains the signature of the functions from the file, is being generated in order to
become available for calling by other work methods.

In the example from below is shown a description of a RFC function from SAP on a
proxy call basis, function that allows the over taking of the materials from the system:

 /// <summary>
 /// Remote Function Module Z_RFC_MATERIALE.
 ///
 /// </summary>
 /// <param name="Gv_Eroare"></param>
 /// <param name="Gv_Mtart"></param>
 /// <param name="Gt_Matnr"></param>
 [RfcMethod(AbapName = "Z_RFC_MATERIALE")]
[SoapDocumentMethodAttribute("http://tempuri.org/Z_RFC_MATERIALE",
 RequestNamespace = "urn:sap-com:document:sap:rfc:functions",

Applications of Quantitative Methods to e-Commerce

231

RequestElementName = "Z_RFC_MATERIALE",
ResponseNamespace = "urn:sap-com:document:sap:rfc:functions",
 ResponseElementName = "Z_RFC_MATERIALE.Response")]
 public virtual void Z_Rfc_Materiale (
 [RfcParameter(AbapName = "GV_MTART",RfcType=RFCTYPE.RFCTYPE_CHAR, Optional =
false, Direction = RFCINOUT.IN, Length = 4, Length2 = 8)]
[XmlElement("GV_MTART", IsNullable=false, Form=XmlSchemaForm.Unqualified)]
 string Gv_Mtart,
[RfcParameter(AbapName = "GV_EROARE",RfcType=RFCTYPE.RFCTYPE_CHAR, Optional =
true, Direction = RFCINOUT.OUT, Length = 80, Length2 = 160)]
[XmlElement("GV_EROARE", IsNullable=false, Form=XmlSchemaForm.Unqualified)]
 out string Gv_Eroare,
[RfcParameter(AbapName = "GT_MATNR",RfcType=RFCTYPE.RFCTYPE_ITAB, Optional = true,
Direction = RFCINOUT.INOUT)]
 [XmlArray("GT_MATNR", IsNullable=false, Form=XmlSchemaForm.Unqualified)]
 [XmlArrayItem("item", IsNullable=false, Form=XmlSchemaForm.Unqualified)]
 ref ZMATNRTable Gt_Matnr)
 {
 object[]results = null;
 results = this.SAPInvoke("Z_Rfc_Materiale",new object[] {Gv_Mtart,Gt_Matnr });
 Gv_Eroare = (string) results[0];
 Gt_Matnr = (ZMATNRTable) results[1];
 }

In the following example it is shown a method of web service "GetMaterials" used to
call RFC function rendered above:
 [WebMethod]
 public DataTable GetMaterials()
 {
 try
 {
 string error = "";
 SAPProxy proxy = new SAPProxy(this.BuildConnectionString());
 ZMATNRTable materialsERSA = new ZMATNRTable();
 proxy.Z_Rfc_Materiale("ERSA", out error, ref materialsERSA);
 if (error != String.Empty)
 throw new Exception(error);
 Access access = new
Access(ConfigurationManager.ConnectionStrings["ConnectionString"].ConnectionString);
 for (int i = 0; i < materialsERSA.Count; i++)
 access.SynchronizeMaterials(materialsERSA[i], "ERSA");
 return materialsERSA.ToADODataTable();
 }
 catch (Exception exc)
 {
 throw (exc);
 }
 }

Stage 2: Rendering the Web Service
At this stage, after the construction of the web service, it will be rendered in the

application from the mobile terminal which is developed on the .Net platform. If the service
is available, similar to Stage 1, the description of the service in the application is brought
with the help of UDDI and WSDL.

Applications of Quantitative Methods to e-Commerce

232

Stage 3: Calling methods of service
After rendering the contract and after the generation of the proxy class to call the

service, in the mobile device application one can call the service methods.
Exchanging data between applications in the background, in the form of SOAP

messages is done asynchronously and at runtime. If there is a large volume of data, due to
the interoperability based on XML standard, the process may be slowed because of the need
for parsing of the XML messages in different types of objects. This exchange of messages is
done by following these steps:

Step 1: Request the mobile application service
While calling a method from the proxy class, on a SOAP framework basis, a request

is developed, in XML format. This message is attached to the SOAP - and will on a HTTP
protocol basis to the service. If the service is not available and if there are no different
restrictions on the network, next will be fallowed step 2, otherwise the application ends.

Step 2: Request service from SAP
The request was received by the service and it will be forwarded to SAP through

connector and the proxy class. Based on the SOAP Runtime protocol, which provides access
and the calling to the RFC functions, all the messages are sent in XML format via HTTP, and
they are parsed as objects and BOR specific structures.

Step 3: The SAP’s answer to the service
The result of the request from Step 2 is sent in XML format by the SOAP Runtime and

it is parsed by the .NET connector into the service’s specific objects.

Figure 9. Simple call web service from Windows application

Step 4: The answer of the service to the mobile application
The result from Step 3, as a response from service to customer, it is sent like in Step

1. The XML message is transformed by SOAP’s framework into specific objects from the
development environment, in our case a DataTable object type which can be seen in Figure
9.

4. Conclusions

Web services play a similar role with older technologies such as Remote Procedure

Call (RPC), Common Object Request Broker Architecture (CORBA), Distributed Component
Object Model (DCOM), but also offers several advantages over these. The great advantage
of Web Services is that they can integrate different platforms and allow the interoperability
between different distributed systems. The Integrity and the interoperability can be
addressed with the SOA’s help in a two-stage process that involves publishing and
orchestrating the web services. The Independence with respect to various platforms is due to
common standard that they all have as a basis, the XML. Using Web services provides to the
developers the opportunity to create high quality applications more quickly.

In this paper, the authors came up with a pattern of using and integrating the Web
services, proofing the interoperability between multiple distributed applications running on
different platforms.

Applications of Quantitative Methods to e-Commerce

233

References

1. * * * Understanding Web Services http://www.webopedia.com/DidYouKnow/

Computer_ Science/2005/web_services.asp]
2. Foster, H., Uchitel, S., Magee, J. and Kramer, J. WS-Engineer A Model-Based

Approach to Engineering Web Service Compositions and
Choreography, Springer Berlin Heidelberg, 2007, pp. 87-119

3. Ciurea, C., DUMITRACHE, M. and Doinea, M. Distributed collaborative systems
security, KEPT 2009 Conference The second edition, Cluj - Napoca, July
2009, pp. 20-24

4. Kovač, D. and Trček, D. Qualitative trust modeling in SOA, Journal of Systems
Architecture, in Secure Service-Oriented Architectures, vol. 55, Issue 4,
April 2009, pp. 255-263

5. * * * http://java.sun.com/developer/technicalArticles/WebServices/soa/
6. Buhwan, J., Hyunbo, C., Choonghyun, L. On the functional quality of service (FQoS)

to discover and compose interoperable web services, Expert Systems with
Applications, vol. 36, Issue 3, Part 1, April 2009, pp. 5411-5418

7. Ivan, I., Vintilă, B., Palaghiță, D., Pavel, S. And Doinea, M. Risk estimation models in
distributed informatics applications, Globalization and Higher Education
in Economics and Business Administration (GEBA 2009), Iasi, Romania, 22nd
to 24th of October 2009, pp. 72-92

8. Tidwell, D. and Snell, J. Programming Web Services with SOAP, O’Reilly, 2002, 225
pp.

9. Smeureanu, A., Dumitrescu, S.D. Metode de îmbunătăţire a performanţelor
aplicaţiilor GIS, Journal of doctoral research in economics, vol 1, no 1,
2009, pp. 22-29

10. Hollar, R., Murphy, R. Enterprise Web Services Security, Charles River Media, 2006,
pp. 433

11. Tzima, F. and Mitkas, P. Web Services Techology, Information Science Reference,
2008, pp. 25-44

12. * * * http://sdn.sap.com
13. SAP-BC ABAP Programming Release 4.6B, SAP-AG, 2001, pp. 1540
14. Nielsen, E.S., Ruiz, S.M. and Rodriguez-Pedrianes, J. Mobile and Dynamic Web

Services, Birkhauser Verlag, Basel, 2007, pp. 117-133

