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Abstract: The aim of this paper is to apply both Generalized Maximum Entropy (GME) 
estimation method and Ranked Set Sampling (RSS) technique to improve the estimations of the 
Gompertz’s Model. The Gompertz’s model is a simple formula which expresses the 
geometrical relationship between the force of mortality and age. 
The choice of evaluating the RSS is due to the fact that in many practical applications of the 
Gompertz’s model, as in biological or environmental sciences, the variable of interest is more 
costly to measure but is associated with several other easily obtainable. 
In this paper, we have used Monte Carlo experiments to illustrate the performance of the GME 
estimator based on two different sampling techniques: the Simple Random Sample (SRS) and 
RSS. Moreover, the results are compared with the traditional Maximum Likelihood Estimates 
(MLE). 
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1. Introduction 
 

Gompertz’s law (Gompertz, 1865) has a very important role in modelling the 
human mortality rate and providing the actuarial tables. Moreover, in recent years, it has 
been applied to several other fields, such as in the fertility rate model (Booth, 1984), in 
biological medical data (Ricklefs et al., 2002), in environmental data, or in the study of 
reliability (Yamada et al., 1985). 

In this paper, we propose the GME estimator as an alternative to Maximum 
Likelihood Estimation (MLE), since it is widely used in literature in cases of non linear function 
(Golan et al., 2001). In particular we can highlight some points: 

• The GME approach uses all the data points and does not require restrictive 
moment or distributional error assumptions.  

• Thus, unlike the MLE estimator, the GME is robust for a general class of error 
distributions.  

• The GME estimator can be used when the sample is small, when there are many 
covariates, and when the covariates are highly correlated.  

It means that the GME was proposed because it is particularly useful when there 
are no restrictive sampling assumptions or in the case of ill-posed problems or 
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underdetermined ones, and also because in these cases MLE is unattractive and not robust 
to the underlying (unknown) distribution (Golan, 2008). 

Moreover, RSS (McIntyre, 1952) could be used to increase the precision of 
estimates and to reduce costs, by using the researchers’ experiences or inexpensive 
measurements.  

The format of this paper is as follows. In Section 2 the Gompertz’s model is 
introduced in its characteristics and analytical formulation by considering the MLE method. In 
Section 3, firstly the classic GME formulation is specified and then the Gompertz’s model is 
expressed in the framework of the GME. In Section 4, the RSS method is presented and a 
discussion on how it can be utilized for applications in which the Gompertz’s model is used. 
In Section 5, Monte Carlo experiments show the numerical performance for the proposed 
estimators, based on the RSS and SRS sampling schemes. Section 6 contains concluding 
remarks and discussion of future works. 

 
2. The Gompertz’s Model 

 
Benjamin Gompertz, in 1825, showed that the mortality rate increases in a 

geometrical progression, defining one of the most informative actuarial functions for 
investigating the ageing process. He observed a law of geometrical progression in death 
rates by analysing a sample of people, aged between 20 and 60 years, in England, Sweden, 
and France. Gompertz’s law has become the most successful law to model the dying out 
process of living organisms (Willemse et al., 2000). The relationships of the force of 
mortality, such as the power function of age, is also called the Weibull model (Carey, 2001) 
and it can be expressed by the following formula:  

 
xy B C ε= ⋅ +         (1) 

 
Where B>0 reflects the general level of mortality in the population, and C>1 is 

Gompertz’s constant that reflects the rate at which the force of mortality increases with age; 
x>0 is the age, and y is the force of mortality at age x.  

The estimates of the parameters B and C can be obtained numerically using 
different methods, however, the MLE is the most commonly used for this model and it is 
discussed by Garg et al. (1970). 

The MLE estimation method, presents the assumption that the random variables Dx 
(number of  deaths at age x before reaching age x+1) follows a Binomial distribution: B(nx, 
qx). The px, reported in the following formula (2), is the conditional probability function of the 
Gompertz’s model given in (1): 

 

( )
1 1

1 / log
x x t xtx x

dt BC dt BC C C
xp e e e

μ
+ +

− − − −∫ ∫= = =      (2) 

 
Or considering the log function: 
 

log ( 1) / logx
xp B C C C= − ⋅ ⋅ −  and 1log / logx xp p C+ =

   (3) 

 
The other parameters are defined as follows: qx=1-px, nx is the number of people of 

age x and dx is the value of the random variable Dx. Given this assumption, the logarithm of 
the joint likelihood function is the following: 

 

( ) ( )log ( , ) log log 1x x x x x
x

L B C n d p d p= − ⋅ + ⋅ −∑     (4) 
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The general way of estimating the parameters is to use Nonlinear Maximization 
(NM), so as to find the minimum of the following function and to plug into (2) for the px:  

 

( ) ( )( 1) / log

,
min ( 1) / log log 1

xx B C C C
x x xB C x

n d B C C C d e− ⋅ ⋅ −⎡ ⎤− ⋅ ⋅ ⋅ − − ⋅ −
⎣ ⎦∑  (5) 

 
The NM problem can be solved via numerical methods such as the Newton-

Raphson iteration or the Simplex algorithm. 
 

3. Generalized Maximum Entropy 
 
In the framework of the Information Theoretic we propose the use of the 

Generalized Maximum Entropy (GME) to estimate the non linear relationship between age 
and the force of mortality. In this section, we start by briefly describing the traditional 
maximum entropy (ME) estimation method, then we introduce the GME formulation as a 
method for recovering information from the Gompertz’s model.  

 
3.1. The GME estimation method 
The Entropy of Information was first introduced by Claude Shannon in 1948 as a 

propriety associated to any probability distribution, defining an axiomatic method of 
measuring the uncertainty (state of knowledge) of a collection of events.  

Letting X be a random variable with possible outcomes {x1, x2,…, xs}, with the 
corresponding probability P = {p1, p2,…, ps} such that Σpi=1, Shannon defined the entropy 
of information of probabilities distribution function as: 

 

1
( ) log( )s

i ii
H P k p p

=
= − ⋅ ⋅∑        (6) 

 
Where k is a constant usually equal to 1; and 0 ln(0)=0⋅ . The quantity {- log(pi)} is 

called self information of the xi event. The average on the self information is defined as the 
Entropy. The function H(P) is called Entropy, Shannon’s Entropy or Information Entropy. 

Edwin Thompson Jaynes (1957a, 1957b) extended the entropy of information by 
defining the Maximum Entropy Principle (MEP). The MEP estimates an unknown probability 
distribution from given moment constraints and adding up normalization constraints on the 
probabilities. 

The frequency that maximizes entropy is an intuitively reasonable estimate of the 
true distribution when we lack any other information. If we have information about an 
experiment, such as the sample moments, or non-sample information about the random 
variable, such as restrictions from economic theory, we can to alter our "intuitively 
reasonable" estimate. The method of maximum entropy proceeds by choosing the 
distribution that maximizes entropy, subject to the sample and non-sample information. 

Letting X be a random variable with possible outcomes {x1, x2,…, xs}, the objective 
of the MEP is to recover the unknown probability distribution P = {p1, p2,…, ps}, taking into 
account: consistency constraints, by defining the functions {f1(xi), f2(xi), …, fT(xi)}, which 
represents the constraints (or information) generated by the data; measurable values {y1, y2, 
…, yT}, obtained by a priori knowledge on the phenomenon, or by training dataset. 

The constraints generated from the data and the measurable values, are expressed 
by the following equation: 

 

1
( )s
t i i ti
f x p y

=
⋅ =∑   t = 1,2,…,T      (7) 

 
The adding up normalization constraints, which means Σpi=1, are the following: 
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1
1s

ii
p

=
=∑          (8) 

 
The MEP estimates the probability distribution by the maximization of the entropy 

function, equation (6), based on the consistency and normalization constraints, equation (7, 
8), where the consistency constraints are expressed in form of expectation values of a 
discrete random variable1: 

Amos Golan et al. proposed in 1996 an alternative method to solve many standard 
and ill-posed econometric problems in the framework of the MEP developed by Jaynes,  

This information theoretic method, which is called Generalized Maximum Entropy 
(GME), is based on the re-parameterization and re-formulation of a general linear model. 
Considering a regression model y=Xβ+ε with n units and m variables, the coefficients and 
the error terms can be re-parameterized as a convex combination of expected value of a 
discrete random variable, as in the  

following equation: 
 

,1 , ,1 ,1 , , ,1 , ,1n n m m n n m m m M m M n n N n N⋅ ⋅ ⋅ ⋅= ⋅ + = ⋅ ⋅ + ⋅y X β ε X Z p V w    (9) 

 
The matrix inner products (Z·p) and (V·w), represent respectively the re-

parameterization of the regression coefficients and the error terms as in form of expected 
value of a discrete random variable. 

The matrices Z and V are diagonal and the generic matrix element is represented 

respectively by the vectors ' [ / 2 0 / 2 ]k c c c c= − −z  with {k = 1, . . . , m} and 
' [ / 2 0 / 2 ]h b b b b= − −v  with {h = 1, . . . , n}.  

These vectors (zk and vh) define the support values, called fixed points, usually with 
five elements (M=N=5) with a given constants ‘c’ and ‘b’, uniformly and symmetrically 
chosen around zero with equally spaced distance discrete points, or as Golan suggested, for 
the error terms, to follow the six-sigma rule (Pukelshiem, 1994), where the number of fixed 
points is 3, and the constant c is equal to ys

)
. 

The super vectors p and w associated are probabilities and have to be estimated by 
maximization of the Shannon entropy function: 

 
' '
1, ,1 1, ,1( , ) ln lnm M m M n N n NH p w ⋅ ⋅ ⋅ ⋅= − ⋅ − ⋅p p w w

 
 
subjected to some normalization and consistency constraints. The steps for the GME 

algorithm are shown in the following table 1. 
 
Table 1. The Generalized Maximum Entropy Algorithm 
1. Re-parameterize the unknown parameters and the disturbance terms as a convex 
combination of expected value of a discrete random variable; 
2. Re-formulate the model with the new re-parameterization as the data constraint; 
3. Define the GME problem as non-linear programming problem in the following 
form: 
 

Objective Function = Shannon’s Entropy Function 
 
1. The consistency constraints, which represents the new formulation of the model; 
2. The normalization Constraints. 
4. Solve the non-linear programming by using numerical method 

 
The constraints defined for estimating the unknown parameters refer to consistency 

and normalization constraints. The first one represents the information generated from the 
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data, that means a part of the model defined in the equation (9); the second one identifies 
the conditions: 0≤pkj≤1, {j=1, …,M; k=1,…,m}, ∑pkj=1 {k=1,…,m} and 0≤whj≤1, 
{j=1,…,N; h=1,…,n}, ∑whj=1 {h=1,…,n}. 

The main advantages of using GME estimation method, as above defined (supra § 
1), are its desirable properties which can be briefly summarized: does not require restrictive 
moments or distributional error assumptions; it’s robust for a general class of error 
distributions; may be used with small samples, with many highly correlated covariates; 
moreover, using the GME method, it is easy to impose nonlinear and inequality constraints. 

Therefore the GME works well in case of ill-behaved data and the above listed 
cases, where the MLE estimator cannot proceed. 

In the following section the GME formulation for the Gompertz’s model is 
explained, moreover the definition of the optimization function and both consistency and 
normalization constraints will be discussed. 

 
3.2. GME for the Gompertz’s Model 
The GME formulation as a method for recovering information from the Gompertz’s 

model, starts from the relationship between the age and the force of mortality, expressed by: 
 

,1
,1 ,1

n
n nB C= ⋅ +xy ε          (9) 

 
The starting point, following the algorithm in table 1, is the re-parameterization of 

the unknown parameters and error terms, as a convex combination of excepted values. For 
the Gompertz’s model, the number of predictor variables is just one, age, which means, as 
in the above general formulation, m=1 and the matrix Z is just a vector 

' [ / 2 0 / 2 ]k c c c c= − −z , considering M=5 fixed points. The error term is obtained 

by considering the diagonal matrix with generic element ' [ 3 0 3 ]k y ys s= − ⋅ ⋅v ) )
, based on 

the three-sigma rule, with N=3 fixed points. 
The re-parameterization as convex combination of expected values is expressed in 

the following equations: 
 

'
1, ,1M MB = ⋅z p         (10) 
'
1, ,1M MC = ⋅c q         (11) 

,1 , ,1n n n N n N⋅ ⋅= ⋅ε V w         (12) 

 
Moreover, normalization constraints are necessary, because for each probability 

vector of the coefficients and error terms (ex., pM,1), the sum of probabilities estimated have 
to be equal to 1, which means ∑pj=1 , ∑qj=1 and ∑whj=1 {h=1, …, n}. 

These constraints are formalized by the following expressions: 
 

'
1, ,1 1M M⋅ =p 1          (13) 
'
1, ,1 1M M⋅ =q 1          (14) 
*

, ,1 ,1n n N n N n⋅ ⋅⋅ =J w 1         (15) 

 
The matrix J* is the Kronecker product between the identity matrices In,n and the 

vector of one 1M,1, which means *
, , 1,( )n n N n n N⋅ ′= ⊗J I 1 : 
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*
, ,1 ,1n n N n N n⋅ ⋅⋅ =J w 1    =>

1

2

111 1
111 1

111 1n n n

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0 0 w
0 0 w

0 0 w

L

L

M M O M M M

L

  (16) 

 
Given the re-parameterization, the Gompertz’s model can be re-formulated in the 

following way, where all the parameters, unknowns and error terms, are expressed as 
expected values: 

 

( ) ( ) ,1' '
,1 1, ,1 1, ,1 , ,1

n

n M M M M n n N n N⋅ ⋅= ⋅ ⋅ ⋅ + ⋅
x

y z p c q V w     (17) 

 
The definition of GME problem as non linear programming problem is the following: 
 

Objective function:  Max ' ' '( , , ) ln ln lnH P Q W = − ⋅ − ⋅ − ⋅p p q q w w  

Consistency Constraints: ( ) ( ) ,1' '
,1 1, ,1 1, ,1 , ,1

n

n M M M M n n S n S⋅ ⋅= ⋅ ⋅ ⋅ + ⋅
x

y z p c q V w  

Normalization Constraints: '
1, ,1 1M M⋅ =p 1  ; '

1, ,1 1M M⋅ =q 1  ; *
, ,1 ,1n n N n N n⋅ ⋅⋅ =J w 1   

 
The non-linear programming system is solved by the formulation of the Lagrangian 

function and the first order conditions which provides the basis for the solution. The 
Lagrangian function is expressed by the following formulation: 

 

( ) ( )' ' ' ' ' '

' ' ' *

ln ln ln

1 1

L

θ ν

⎡ ⎤= − ⋅ − ⋅ − ⋅ + ⋅ − ⋅ ⋅ ⋅ − ⋅ +⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ ⋅ − ⋅ + ⋅ − ⋅ + ⋅ − ⋅⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x
p p q q w w λ y z p c q V w

p 1 q 1 τ 1 J w
 

  (18) 
 
where θ, ν, λ, τ, are respectively the scalars and the vectors of the Lagrangian 

multipliers. By taking the gradient of L it is possible to derive the first-order-condition. 
However, the equations system will not be in closed form and to get the final values, a 
numerical optimization technique (successive quadratic programming method) should be 
used to compute probabilities (Ciavolino, 2007).  

The estimations can be expressed by: 
 

'
1, ,1

ˆ ˆM MB = ⋅z p         (19) 

'
1, ,1

ˆ ˆM MC = ⋅c q         (20) 

, ,1ˆ ˆn n S n Sε ⋅ ⋅= ⋅V w         (21) 

 
Respectively for the general level of mortality (19), the force of mortality (20) and 

the error term (21). 
 

4. Ranked Set Sampling Method 
 
The concept of Ranked Set Sampling is a recent development that enables more 

structure to be provided to the collected sample items, although the name is a bit of a 
misnomer as it is not as much a sampling technique as a data measurement technique. 
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This approach to data collection was first proposed by McIntyre in 1952, for 
situations where taking the actual measurements for sample observations is difficult (e.g., 
costly, destructive, time-consuming), but mechanisms for either informally or formally 
ranking a set of sample units is relatively easy and reliable. 

In particular, McIntyre was interested in improving the precision in estimation of 
average yield from large plots of arable crops without a substantial increase in the number 
of fields from which detailed, expensive and tedious measurements needed to be collected. 
For discussions of some of the settings where ranked set sampling techniques have found 
application, see Chen et al. (2004). 

The idea of using the RSS for the Gompertz’s model, is in some practical 
applications, where the response variable is too expensive to measure , destructive or time-
consuming, but but the predictor variable can be measured easily with relatively negligible 
cost. 

Some examples can be found in studies in the ecological or biology fields, where, 
for instance, the death rate of plants or insects caused by the contamination in hazardous 
waste sites are analyzed using the Gompertz’s law. The analysis can be improved by 
inspections for ranking areas of soil based on visual inspection or other expert opinion about 
the sample units (Chen et al., 2004). 

The scheme we used in this study is the balanced RSS, which involves drawing m 
sets of Simple Random Samples, each of size m from a population, and ranking each set 
with respect to the variable of interest, for instance the age. Then, from the first set, the 
element with the smallest rank is chosen for the actual measurement. From the second set, 
the element with the second smallest rank is chosen. The process is continued until we have 
selected the largest unit from the last simple random sample. 

The procedure can be formalized as the following steps: 
1. Select m2 units randomly from the population. 
2. Randomly allocate the m2 units into m subsets, each of size m. 
3. Order the units within each subset, based on the perception of the interest 

variable. 
4. In the RSS, the smallest unit in the first subset is selected for actual 

measurement, the second smallest unit in the second subset is selected for actual 
measurement, we continue in this process until the largest ranked unit is selected from the 
mth subset. 

5. These four steps are called cycle and can be repeated r times until the 
desired sample size is reached, equal to n r m= ⋅ . 

If just three ranks and one cycle are considered, the selected RSS is denoted by: 
{X[1], X[2], X[3]}. In order to select a RSS with a sample size equal to n r m= ⋅ , the cycle is 
repeated r independent times, yielding the following sample: 

 

{ }[1], [2], [ ],, ,..., , 1,...,j j m jX X X for j r=      (22) 

It can be noted that the selected elements are mutually independent order statistics 
but not identically distributed. In practice, the set size m is kept small to ease the visual 
ranking, RSS literature suggested that m = 2, 3, 4, 5 or 6.  

 
Table 2. Ranked Set Sampling Design 

 Rank (m=3) 
Cycle (r=4) Young Adult Elderly 

 X[1],1 - - 
1 - X[2],1 - 
 - - X[3],1 
 X[1],2 - - 

2 - X[2],2 - 
 - - X[3],2 
 X[1],3 - - 

3 - X[2],3 - 
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 - - X[3],3 
 X[1],4 - - 

4 - X[2],4 - 
 - - X[3],4 

 
Table 2 shows an illustrative example, where the set size m is equal to 3 (the 

number of ranks) and the cycles r = 4. In the table, we assume that the units are selected 
according to their age, therefore there are three ranks: Young, Adult, Elderly, and the rows 
represent the ordered sample within each cycle, where X[i],j is the sample unit included in the 
RSS, which represents the ith order unit in the jth cycle. 

The number of units randomly selected are 36, m2=32=9, for 4 cycles, but only 12 
are included in the RSS. 

 
 

5. Simulation and Results 
 
We perform different simulation studies in order to draw conclusions about the 

performance of GME and MLE estimation methods for the Gompertz’s model by using the 
RSS technique. The simulation experiments start with the analysis of the fixed points to 
evaluate the sensitivity of the GME for the Gompertz’s model. The analysis of the sensitivity is 
made by changing the value of the constant ‘c’ and the number of the fixed points. This 
analysis is recommended and useful (Golan et al., 1996), to verify the support spaces on the 
coefficients and error terms to measure the sensitivity of results across support space 
specifications. 

Four simulation experiments are considered to measure the sensitivity of the GME 
estimator: the first two simulations, to determine the variance and the bias of the 
Gompertz’s coefficients; the last two simulations, to examine the variance and the bias of the 
error terms. 

The sensitivity analysis is measured in term of Bias and Mean Squared Error (MSE), 
as in the following equations for the B coefficient: 

 

( )1
1

ˆ( ) n
ii

Bias B n B B−
=

= ⋅ −∑  

 

( )21
1

ˆ( ) n
i ii

MSE B n B B−
=

= ⋅ −∑  

 
After the sensitivity simulation studies, that allow to choose the best support space 

specification for the GME estimator, we performed two simulation studies for the evaluation 
GME and MLE performance based on the SRS and RSS. 

The measures Bias and MSE are used to evaluate the performance of the estimator 
applied to both sampling techniques, computing also relative efficiency (eff); where the eff of 
B is defined as: 

 
( )( )
( )

GME

MLE

MSE Beff B
MSE B

=
 

 
To perform all the simulation studies, the parameters of the Gompertz’s function B 

and C were first initialized to 0,3 and 2. Using these values as initial values, a simulation 
study was carried out by generating 1000 samples according to the following relationship: 

 

0,3 (2) ix
i iy ε= ⋅ + , i = 1,2,...,n     (23) 
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where ε ~ N(0,1) and X ~ Exp(1). The sensitivity simulation studies for the GME 
parameters choice were conducted by fixing the sample size to be 20.  

All the pseudo distributions varieties are generated from a build in subroutines of 
International Mathematical and Statistical Library (IMSL). The solution of GME system were 
solved and generated by using a successive quadratic programming method to solve a 
nonlinear programming problems based on the NCONF and NLPQL subroutines. The basic 
FORTRAN codes for computational purposes were developed by Schittkowski (1986) and 
necessary modifications were made by the authors. 

 
5.1. The Sensitivity Analysis of the GME Estimates 
Tables 3, 4, 5 and 6 show the results of the sensitivity analysis for the fixed points. It 

has been considered four experiments: the first two to evaluate the support value ‘c’ and the 
number of fixed points for the parameters B and C; the last two for the error term (supra § 
3). 

 
Experiment 1. This experiment is performed to select the support parameter 

bounds of B and C. we start by using only three support values for each of these parameters 
in the interval [-c, 0, c], where c = 1, 5, 10, 50 or 100. The support bounds of the error term 
are fixed to be three data points selected according to the three sigma rule. The results of 
this simulation study are given in Table.3. The results indicated that the GME estimates were 
more accurate and more efficient than the MLE estimates for all the selected support bound. 
However, the best support bound should be selected in the interval [-5, 0, 5] for both 
parameters, which; almost, gives the minimum MSE and bias for the GME estimates. 

 
Table 3. Selecting the ‘c’ value of the parameters (B e C) support points 

 METHODS GME: different ‘c’ VALUES of the fixed points 

PARAMETERS [-1, 1] [-5, 5] [-10, 10] [-50, 50] [-100, 100] 

 
MLE 

B Bias -0,0098 -0,0107 -0,0097 -0,0114 -0,012 0,1715 

 MSE 0,0108 0,011 0,0115 0,0153 0,0131 0,0394 

C Bias -0,0159 -0,0029 -0,0092 0,0171 0,0141 0,0504 

 MSE 0,0028 0,0022 0,0023 0,0026 0,0028 0,0034 

 
 
Experiment 2. This experiment is repeated under the same assumptions of 

experiment two, and by fixing the support bounds of the parameters in the interval [-5, 5]. 
The aim now is to determine the number of support points within the suggested interval that 
leads to better results. Consequently, we start to increase the numbers of support points and 
allocate them in an equidistant fashion. The results of this experiment in Table. 4 suggested 
that there is no statistical improvement of the estimators if we increase the number of 
support points from 3 to 7 data points. Therefore, according to this simulation experiment, 
we suggest to fix the number of support points to be three in the interval [-5, 5].  

 
Table 4. Fixing the number of support points for the parameters (B e C) 

 METHODS GME: Different NUMBERS of fixed points in [-5 5] 

PARAMETERS 3 4 5 6 7 

 
MLE 

B Bias -0,0107 -0,0071 -0,0104 -0,0077 -0,0098 0,1715 

  MSE 0,011 0,0128 0,0118 0,014 0,0128 0,0394 

C Bias -0,0029 -0,0136 -0,0112 -0,008 -0,0077 0,0504 

  MSE 0,0022 0,0024 0,0023 0,0024 0,0021 0,0034 

 



 
Quantitative Methods Inquires 

 

 
326 

Experiment 3. We conducted a sampling experiment based on the experimental 
design outlined above and based on the results of experiment 1 and experiment 2. 
Hereafter, the support bounds of the error term is selected in the interval [-c Sy, 0, c Sy], then 
we start changing the value of ‘c’ to be equal to 1, 2, 3, 4 and 5. The results of this 
experiment in Table 5 indicate that the best value for ‘c’ is 3, this result is consistent with the 
results of Golan et al (1996), which suggest in using the three sigma rules when we setup 
the support bonds of the error terms. 

 
Table 5. Selecting the ‘c’ value for the error term 

 METHODS GME: different ‘c’ VALUES of the fixed points 

PARAMETERS [-1S, 1S] [-2S, 2S] [-3S, 3S] [-4S, 4S] [-5S, 5S] 

 
MLE 

B Bias -0,0067 -0,0107 -0,0107 -0,0117 -0,0139 0,1715 

  MSE 0,0107 0,0114 0,011 0,0129 0,014 0,0394 

C Bias -0,0144 -0,0143 -0,0029 -0,0098 -0,0111 0,0504 

  MSE 0,0023 0,0021 0,0022 0,0019 0,0018 0,0034 

 
 

Experiment 4. Likewise experiment 2, the simulation trial were repeated by 
shifting the support points of the error term to be equally spaced in the interval [-3 Sy, 0, 3 
Sy]. The results of this experiment are in Table 6 suggested that we should fix three support 
values of the error term according to the three sigma rule. 

 
Table 6. Fixing the number of support points for the error term 

 METHODS GME: different ‘c’ VALUES of the fixed points 

PARAMETERS 3 4 5 6 7 

 
MLE 

B Bias -0,0107 -0,0003 -0,0032 -0,0005 -0,0023 0,1715 

  MSE 0,011 0,0169 0,0191 0,0168 0,0165 0,0394 

C Bias -0,0029 -0,0138 -0,0092 -0,0127 -0,0161 0,0504 

  MSE 0,0022 0,0021 0,0028 0,0022 0,0021 0,0034 

 
 
5.2. Performance Analysis of the RSS technique 
In this section, based on the main simulation conditions and the results of the last 

four experiments, we are comparing between two the estimation methods from the view of 
point of the sampling techniques. Two experiments were performed, the first one based on 
SRS and the other one based on RSS. Noting that, in the RSS scheme the ranking done 
based on the X variable. Other ranking schemes could be used such as Double RSS (Al-Saleh 
and Al-Kadiri, 2000), which is not of our interest in this paper, to be an alternative to the 
classical ranking scheme. 

 
Experiment 5. Based on the results of experiment 1 to experiment 4, by selecting 

three support values for each of the parameters in the [-5, 5] interval and three support 
values the error term according to the three sigma rule, this experiment, under the 
simulation assumption outlined above, is conducted by increasing the sample size n, i.e., n = 
20, 25, 30, 40 and 50. The results in Table 7 indicate that the GME is more accurate and 
more efficient than the MLE estimates for all sample sizes. 
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Table 7. Comparisons between GME and MLE using SRS 
C B N Method 

Bias MSE eff Bias MSE eff 
GME -0,0029 0,0022 -0,0107 0,0110 2

0 MLE 0,0504 0,0034 
1,
54 0,1715 0,0394 

3,
58 

GME -0,0150 0,0029 0,0043 0,0138 2
5 MLE 0,0496 0,0033 

1,
14 0,1597 0,0337 

2,
44 

GME -0,0085 0,0029 -0,0005 0,0096 3
0 MLE 0,0510 0,0035 

1,
21 0,1726 0,0395 

4,
11 

GME -0,0046 0,0018 -0,0006 0,0090 4
0 MLE 0,0474 0,0030 

1,
67 0,1663 0,0368 

4,
09 

GME -0,0013 0,0012 0,0007 0,0086 
5
0 M

LE 
0

,0429 
0

,0025 

2,
08 0

,1482 
0

,0289 

3,
36 

 
 
Experiment 6. The aim of this experiment is to improve the simulation results by 

using the simulated RSS. For the RSS sampling scheme we used a set size r = 4 or 5 and the 
number of cycles m = 5,6,8 and 10; to achieve the desired sample size. The results of this 
experiment are given in Table 8. 

 
Table 8. Comparisons between GME and MLE using RSS 

C B r m Metho
d Bias MSE Ef

f 
Bias MSE ef

f 
GME 0,0005 0,0056 0,0039 0,0059 

5 4 
MLE 0,0532 0,0099 

1,
76 0,1938 0,0505 

8,
55 

GME -0,0302 0,0053 0,0154 0,0144 
5 5 

MLE 0,0543 0,0098 
1,
85 0,1953 0,0511 

3,
55 

GME -0,0101 0,0025 -0,0003 0,0128 
6 5 

MLE 0,0551 0,0041 
1,
64 0,1917 0,0499 

3,
89 

GME -0,0179 0,0032 -0,0161 0,0107 
8 5 

MLE 0,0506 0,0039 
1,
22 0,1726 0,0405 

3,
78 

GME 0,0078 0,0033 -0,0003 0,0084 
1
0 5 

LE 
0

,0535 
0

,0034 

1,
03 0

,1929 
0

,0514 

6,
12 

 
 
We conclude by summarizing our findings: 
1. In this study we used simulated ranked data with GME and MLE estimation 

methods to estimate the parameters of the Gompertz’s model. 
2. Under the simulation assumptions, GME based on both sampling techniques 

SRS and RSS gives a better estimate than MLE from the MSE point of view. The simulated 
efficiency score is more than 1 in both experiments for all parameters and under different 
sample sizes.  

 
6. Conclusions and Discussion 

  
To sum up, we consider fitting the Gompertz’s model by two different estimation 

methods MLE and GME and based on two different sampling techniques: SRS and RSS. 
Despite the sampling technique, the simulation results demonstrate that the GME estimates 
are superior and often more efficient than MLE estimates in terms of MSE.  
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Table 9. Simulation results GME (SRS vs RSS) 

B C N Method 

Bias MSE Eff Bias MSE eff 

SRS -0,0107 0,0110 -0,0029 0,0022 
20 

RSS 0,0039 0,0059 
1,86 

0,0005 0,0056 
0,39 

SRS 0,0043 0,0138 -0,015 0,0029 
25 

RSS 0,0154 0,0144 
0,96 

-0,0302 0,0053 
0,55 

SRS -0,0005 0,0096 -0,0085 0,0029 
30 

RSS -0,0003 0,0128 
0,75 

-0,0101 0,0025 
1,16 

SRS -0,0006 0,0090 -0,0046 0,0018 
40 

RSS -0,0161 0,0107 
0,84 

-0,0179 0,0032 
0,56 

SRS 0,0007 0,0086 -0,0013 0,0012 
50 

RSS -0,0003 0,0084 
1,02 

0,0078 0,0033 
0,36 

 
For all situations used in the simulation study considering different sample size, the 

GME estimates are more efficient and more accurate than the MLE estimates. However, 
there is no improvement in parameter estimation by MLE rely on RSS.  

However, Table 9 shows the results obtained by comparing the SRS and RSS 
sampling schemes in the context of GME. We find out that they are comparable and no 
method is better than any other method, therefore, we can used GME as a robust estimation 
method to fit Gompertz’s model whatever the sample technique is used. 

Moreover it is widely shown in the literature that in empirical circumstances, the 
RSS can be employed to gain more information than SRS while keeping the cost of, or the 
time constraint on, the sampling about the same. 

Consequently, the GME estimator based on any sampling scheme can be 

recommended for estimating the parameter of Gompertz’s model as an alternative 

estimation method to the classical MLE. 

Moreover, other statistical procedures and new methodologies in the context of RSS 

are proposed, like extreme ranked set sampling (ERSS), median ranked set sampling (MRSS) 

or L ranked set sampling (LRSS) by Al-Nasser (2007). It may be useful to investigate these 

different methods for the Gompertz’s model, considering the GME estimator. 
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1 The estimates will not be in closed form and to get the final values, a numerical optimization technique (successive 
quadratic programming method) should be used to compute probabilities. 
 


