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Abstract: In this paper, we present a novel method for fast data-driven construction of 
regression trees from temporal datasets including continuous data streams. The proposed 
Mean Output Prediction Tree (MOPT) algorithm transforms continuous temporal data into two 
statistical moments according to a user-specified time resolution and builds a regression tree 
for estimating the prediction interval of the output (dependent) variable. Results on two 
benchmark data sets show that the MOPT algorithm produces more accurate and easily 
interpretable prediction models than other state-of-the-art regression tree methods. 
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1. Introduction 
 

The time dimension is one of the most important attributes of massive continuous 
temporal data sets or continuous data streams [13]6, where data arrives and has to be 
processed on a continuous basis. Sources of such data include real-time monitoring devices 
as: meteorological stations, traffic control systems, financial markets, etc. If we extract a 
portion of data arrived over a finite time period and store it in a persistent database, it 
becomes a temporal dataset.  Generally, the time dimension is represented in a temporal 
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dataset as a calendar variable which has an agglomerative structure consisting of several 
time granules [22]: for example, 60 seconds represent 1 minute, 60 minutes represent one 
hour, etc. The correct choice of the pre-processing time granularity very often predetermines 
the accuracy and interpretability of data stream mining algorithms.   

We are interested in prediction of temporal continuous variables, since they are 
abundant in most data streams mentioned above.  However, the existing prediction methods 
(such as Regression Tree Models [3, 6, 18-19, 21, 24-25]) do not take the time dimension 
and time granularity into account, since they were developed for mainly static (time-
invariant) databases. In this work, we present a new prediction algorithm capable to induce 
an accurate and interpretable model for estimating the values of a given continuous output 
variable in a massive temporal data set or a continuous data stream.  

 

2. Problem Statement and Prior Work 
 

In many data streams, the data is available as time-continuous statistical moments 
(mean, variance, etc.) calculated over pre-defined measurement cycles rather than raw 
values sampled at discrete points in time.  Examples of such data streams include: 
meteorological data, financial data, factory control systems, sensor networks, etc.  For 
example, a meteorological station might be continuously storing mean and variance 
estimation for a large number of meteorological attributes at predefined time intervals (e.g., 
every 10 minutes). A prediction model that is built using multiple statistical moments instead 
of discretely sampled exact values is likely to have a lower update cost, since as long as an 
attribute value remains within the prediction interval, fewer updates to the model will be 
required. 

However, supervised predictive data mining models like regression models (GLM, 
MARS[10]) and Regression Trees (M5 [21], M5' [25], CART [3], GUIDE [19], RETIS [18], 
MAUVE [24], (M)SMOTI [6]) widely used at present for prediction of continuous target 
variables  do not utilize multiple statistical moments of input and target attributes. Time-
series prediction models (ARIMA, ARCH [9], and GARCH [2]), which carry out simultaneous 
prediction of continuous target variables represented by statistical moments are frequently 
non stable on significant volumes of non-stationary data and require labor-consuming 
reassessment at uncertain time intervals [1].  Another difficulty is to produce an interpretable 
set of prediction rules for such cases.  Indeed, even supposing that it would be possible to 
build an accurate regression tree or a set of logical rules using the time dependent input 
attributes, the resulting model is likely to be very intricate and essentially impossible to 
interpret [12]. 

Interval prediction is an important part of the forecasting process aimed at 
enhancing the limited accuracy of point estimation. An interval forecast usually consists of an 
upper and a lower limit between which the future value is expected to lie with a prescribed 
probability. The limits are sometimes called forecast limits [26] or prediction bounds [5], 
whereas the interval is sometimes called a confidence interval [12] or a forecast region [16]. 
We prefer the more widely-used term prediction interval, as used by Chatfield [7] and 
Harvey [14], both because it is more descriptive and because the term confidence interval is 
usually applied to interval estimates for fixed but unknown parameters. In our case, a 
prediction interval is an interval estimate for an (unknown) future value of the output 
(dependent) variable. Since a future value can be regarded as a random variable at the time 
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the forecast is made, a prediction interval involves a different sort of probability statement 
from that implied by a confidence interval.  The above considerations cause a need of a 
model which can process the incoming data in real time and on the basis of the received 
results to make interval prediction of target time dependent continuous variables with a 
given level of statistical confidence.  
 

2. The Proposed Data Stream Mining Methodology  
 
2.1. The Model Induction Algorithm Overview 

The proposed algorithm is aimed at inducing a prediction model for a case where 

every input (predictive) temporal variable is continuous and in a given sliding window k , the 
two statistics of mean and variance are calculated for each measurement cycle. The output 
(predicted) variable is the mean value of a continuous temporal variable calculated for the 

future sliding window Δ+k .  

As inputs the algorithm receives the time resolution interval j , the two first 

statistical moments of each temporally continuous input variable X  with user predefined lag 

Δ  history and temporally continuous output variable Y , as well as the significance level α . 
In the conventional regression tree algorithm, the objective is to build an inductive predictor 
assuming the following functional form: 

 

{ } { }Δ−== jkjk xfyY ˆ  (1) 

 

where the predicted target variable in a sliding window k  is represented as a function of 

input numerical variables in Δ−k sliding window, where Δ  is a user-specified prediction 
lag parameter.  

The proposed algorithm will build an inductive predictor of the following form: 
    

( )( ){ } { }2ˆ,,ˆ
Δ−

Δ−=Θ=
jkjk xjkYjk sxfTwyY ,  (2) 

where   

( ) ( ) ( )( ) { }2ˆ,,
jkjkljkjjkjk yjkYYY

T
YYY sywT ∈ΘΘ−ΘΘΨΘ−Θ=Θ . (3) 

 

Where for time resolution j  in  sliding window k , jkŷ  is the predicted value of 

temporally continuous output variable Y , 
jkYΘ  is the mixture mean variance parameter for 

output variable Y , ( )( )
jkYTw Θ  is the mixture density estimation weight for the output 

variable Y   and Δ−jkx , 2ˆ
Δ−jkxs  are mean and standard deviation estimators of  a temporally 

continuous input  variable X  for time resolution j  in  sliding window Δ−k .  Finally, in (3) 

for time resolution j  in the sliding window k , the joint variable ( )
jkYT Θ  is the mean-
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variance estimator based on the two first statistical moments of the output variable Y , jYΘ  

is the vector of the means of the parameter 
jkYΘ and   ( )ΘΨ  represents the within-group 

normalized covariance matrix for parameter 
jkYΘ , which estimates normalized mean 

variance covariance values of the predicted output variable Y . The confidence interval of the 

joint variable ( )
jkYT Θ  can be approximated using the F  distribution as follows: 

 

( )( ) ( )( )
( ) ( ) ( )( )2,2,21,2

2
112

, −−⋅
−

+−
=Θ j

jj

jj
Y FTLBUB

jk
A

AA
AA

αα , (4) 

 

where jA  is the number of measurement cycles in the sliding window k  for time resolution 

j  and  α  is the user-specified significance level (default value is 0.05).  

When the variance is independent of the mean value of the variable, the values of 

the joint variable ( )
jkYT Θ  are expected to lie inside the confidence interval (see (4)) implying 

that the interaction between mean and dispersion variables does not add information about 
the behavior of the corresponding input variable.  However, when some values of the joint 

variable are found outside the boundaries UB  and LB  (see (4)), it can be said that the 
interaction between mean and dispersion variables adds further information about the input 

variable X . These outliers provide sufficient information for the output variable prediction 
and therefore we can consider only the outliers when evaluating the candidate split points of 
an input variable. In case when no outliers are found, the algorithm checks the possibility to 
switch to the higher time resolution and if the higher resolution represents the initial (raw) 
time resolution, the algorithm proceeds as the regular RETIS [18] algorithm. 

The impurity merit (5.1) and (5.2) contains two parts, left and right, whereas the 

major objective is to find the optimal split point X , which minimizes the expression in (6): 
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( )
( )( ) ( )( )( )RL

T
TVarTVarX Θ+Θ=

Θ
minarg*  (6) 

 

Here ( )LT Θ and ( )RT Θ  are the left (right) joint mean variance estimator values of target 

variable Y , Lp  and  Rp  are the relative number of LN ( RN ) cases that are assigned to the 

left (right) child, while L
Xw ( R

Xw )  is the left (right) mixture density estimation weight for the 

target variable Y . 
Thus, the best split at a node is defined as the split, which minimizes the weighted 

variance of the joint mean variance estimator. 
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2. 2   Performance Metrics 

A validation dataset for time resolution j  and sliding window jw  is made up of 

{ }Nk ,...,1∈  instances (sliding windows), each mapping an input vector ( )kAxx ,...,1  to a 

given target ky . The error is given by: kkk yye −= ˆ , where kŷ  represents the predicted 

value for the k -th input pattern (2). The overall performance is computed by a global metric, 
namely the Mean Absolute Error (MAE) and Root Mean Squared (RMSE). However, the RMSE 
is more sensitive to high volatility errors than MAE. In order to compare the accuracy of trees 
from different domains the % of Explained Variability (EV) defined as: 

 

( ) ( ) ( )( )
( ) %100⋅

−
=

MeanSSE
TSSEMeanSSETEV    (7) 

 

Here Mean  is a majority rule predictor, which always predicts the mean value of the 

training set, ( )MeanSSE and ( )TSSE  are sum of square errors from the mean value and 

the value predicted by the evaluated regression tree ( )T  model, respectively. Another 

possibility to compare regression tree models is the Cost Complexity Measure (CCM) defined 
as: 
 

( ) ( ) ( )TTSTRMSETCCM ⋅+= α .   (8) 

Here ( )TRMSE  is the estimated error cost of regression tree T , ( )TTS  is the number of 

terminal nodes in the tree, and α  is the user defined non-negative cost complexity 

parameter adopted from [9], where it is shown that for a given complexity parameter, there 
is a unique smallest subtree of the saturated tree that minimizes the cost-complexity 
measure, which actually quantifies the tradeoff between the size of the tree and how well 
the tree fits the data.  
 

3. Experimental Results 
 
The performance of the MOPT algorithm proposed in the Section 2.1 was evaluated 

on ElNino data set from the UCI Machine Learning Repository [23]. The selected data set 
consist from numerical attribute types and belong to the multivariate spatio temporal 
regression domain. Finally, the performance of the complete Mean Output Prediction Tree 
(MOPT) algorithm was evaluated on the second data set, which represents a multivariate 
continuous data stream collected at a meteorological station in Israel during a period of 
about 8 years. 

The algorithm performance is compared to four state-of-the-art prediction 
algorithms implemented by the Java API of WEKA [25]: M5P Tree [25] (Bagging M5P tree), 
M5-Rules [21] (Bagging M5-Rules), RepTree (Bagging RepTree) and by our implementation of 
the RETIS [18] algorithm (RETIS-M). The main difference between RETIS[18] and RETIS-M 
algorithm concludes in more fast splitting criterion implementation.  
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3.1. El Nino Data Set 
The El Nino/Southern Oscillation (ENSO) cycle of 1982-1983, the strongest of the 

century, created many problems throughout the world.  The El Nino dataset consists of the 
following attributes: buoy, date, latitude, longitude, zonal winds (west<0, east>0), meridian 
winds (south<0, north>0), relative humidity, air temperature and sea surface temperature. 
Data was taken from the buoys from as early as 1980 for some locations publicly available 
UCI Machine Learning Repository [23]. Other data that was taken in various locations are 
rainfall, solar radiation, current levels, and subsurface temperatures. The experimental data 
is represented using a single (daily) time resolution and it consists of 178,080 data instances.  
Important to note, that all data readings were taken at the same time of day and the target 
(predicted) variable is the subsurface temperature. 

Finally in order to evaluate the predictive performance, the set of all examples was 
split into learning and testing examples sets in proportion 70:30.  

The results in Table 1 show that under RMSE and Explained Variability criterions the 
MOPT and the RETIS-M algorithms are more accurate than other proposed algorithms in 
terms of t-test pair-wise difference. We have denoted by * the cases where the p value of the 
difference between MOPT and other algorithms is smaller than or equal to 5%. The MOPT 
algorithm outperforms significantly the other algorithms in the terms of cost complexity 
measure. Finally, we will to consider that our proposed MOPT Tree is more interpretable 
than RETIS-M tree in terms of Tree Size measure (7 vs. 23). 

 
Table 1. El Nino data set learners comparison 

Learner RMSE TS CCM EV 
B-M5 Rules 0.84*  7 1.01* 0.46* 
B-M5P Tree 0.83* 10 1.07* 0.47* 
B-REPTree 1.57* 5 1.69* NA 
M5 Rules 0.86* 7 1.03* 0.45* 
M5P Tree 0.84* 8 1.03* 0.46* 
MOPT 0.60 7 0.77 0.62 
REPTree 1.57* 3 1.64* NA 
RETIS-M 0.63 23 1.18* 0.60 

 
3.2.   Israel Meteorology Data Set 

In this experiment we used the data collected at a meteorological station in Israel 
during a period of about 8 years (from 01/07/1997 to 31/08/2005). Spatio- temporal 
meteorological attributes (such as pressure, temperature, solar radiation, horizontal wind: 
direction, speed, gust speed, gust time, and vertical wind: down-up and up direction) are 
measured constantly in time and saved every 10 minutes in the form of mean and variance. 
The selected data set exceeds 1,500,000 records. The total number of temporal and 
meteorological attributes collected at the three stations is 22. Our first experiment was run 
on the summer months (JUN, JUL and AUG) only. The experimental data was represented 
using 5 time resolutions (10, 30, 60, 90 and 120 Minutes). The algorithms were run for 
11:00-12:00 and 23:00 – 24:00 hours prediction.  

The aim of this experiment was to compare the different state-of-the-art algorithms 
for different time resolutions in order to be able to predict wind directions for short time 
range (now-casting) up to 8 hours sliding window ahead. We have shown that the most 
state-of-the-art algorithms gave the same or poorer quality of results and less interpretable 
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trees as the proposed Mean Output Prediction Tree (MOPT) algorithm. The results also 
pinpoint the fact that sometimes there was no need to use very high time resolution, but only 
lower time resolutions, since the statistical measures checked (i.e. RMSE, Cost Complexity 
Measure and Percentage of Explained Variability) were similar. 

Tables 2, 3 compare between the proposed MOPT algorithm and four state-of-the-
art algorithms: Modified RETIS (RETIS-M), M5P and REPTree in five time resolution scales in 
terms of Cost Complexity and Explained Variability measures. For more effective evaluation 
of the MOPT algorithm we performed short term prediction of 11:00 and 23:00 hour. The 
sliding window size and the prediction lag were set to 8 hours and 3 hours, respectively.  
Thus for predicting 11 hour wind direction we collected data from 00:00 to 8:00 and for 
predicting 23 hour wind direction we collected data from 12:00 to 20:00. In each prediction 
case, the main issue is to predict wind direction 3 hours ahead therefore fast robust and 
accurate prediction algorithm producing a compact model is needed. For each time 
resolution, we preprocessed the raw data and calculated the first two statistical moments for 
each attribute in every measurement cycle. The MOPT algorithm refers to each input 
attribute as a 2-dimensional array (two moments × number of instances) and determines the 
split point with the aid of two moments target variable impurity and the variance of the input 
variable.  As in the previous experiments, the differences are considered statistically 
significant when the p-value of the t-pair-wise test statistic is smaller than or equal to 5% 
which signed by *. 

 
Table 2. MOPT and state-of-the-arts models cost complexity Measure (CCM) cross 

resolutions results for 11:00 hour prediction 

TR MOPT RETIS-M M5P REPTree 
10 116.61 227.28* 117.18 124.23 
30 117.20 245.48* 149.48* 132.07 
60 120.58 251.13* 172.78* 143.31 
90 120.32 236.58* 171.03* 139.11 

120 114.61 240.73* 188.88* 148.70* 

 
In 10 minutes resolution the M5P slightly outperforms the proposed MOPT model 

and significantly better than other models. In other resolutions the MOPT model significantly 
better than other state-of-arts models. This result pinpoint to the fact that adding second 
moments to split criterion improves quality of prediction for higher time resolution. 
 
Table 3. MOPT and state-of-the-arts models cost complexity measure (CCM) cross 

resolutions results for 23:00 hour prediction 

TR MOPT RETIS-M M5P REPTree 
10 43.95 60.04* 55.00 53.01 
30 43.27 59.84* 60.53* 59.74* 
60 45.45 62.28* 53.38 60.72* 
90 44.55 59.76* 57.76 74.45* 

120 44.53 61.82* 53.60 60.00* 

 
By comparison to state-of-the-art algorithms, the MOPT algorithm demonstrates 

more stable prediction accuracy with a more compact tree size in 23:00 hour prediction (for 

example in 10 minutes resolution the size of MOPT tree is 502 versus 2947 of M5P). In this 
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case, the regression tree pruning procedure may significantly reduce the final size of the 

tree, but this procedure is out of scope in the proposed MOPT approach because our main 

purpose is to build accurate and compact tree with minimal access to the sliding window 

training data. 

 
Table 4. MOPT and state-of-the-arts models explained variability (%EV) cross resolutions 

results for 11:00 hour prediction 

TR MOPT RETIS-M M5P REPTree 
10 45.24% 32.46% 60.18% 59.96% 
30 45.35% 25.35% 41.99% 50.26% 
60 44.59% 25.78% 29.73% 43.43% 
90 44.32% 30.45% 29.69% 53.98% 

120 48.65% 32.39% 23.09% 37.34% 

 
Table 5. MOPT and state-of-the-arts models explained variability (%EV) cross resolutions 

results for 23:00 hour prediction 

TR MOPT RETIS-M M5P REPTree 
10 29.3% -6.1% 22.7% 8.7% 
30 30.7% -5.6% -10.4% 12.1% 
60 25.6% -14.7% 8.5% 12.7% 
90 28.5% -4.8% -13.3% -43.9% 

120 28.3% -13.3% 12.9% 16.4% 

 
The final stage of this experiment presented in the Tables 4-5 demonstrates the 

comparison of Percentage of Explained Variability EV between five defined models and time 

resolutions for 11:00 and 23:00 Hours respectively. The cells with negative explained 

variability percent indicate the fact that the induced model is poorer (less accurate) than a 

simple majority rule mean model. For example, RETIS-M, M5P and REPTree models have not 

contributed to the explained variability of the 23:00 hour prediction.  Important to 

emphasize, that three state-of-the-art algorithms did not scale well to the low time 

resolution of 120 minutes.  

 

4. Conclusions 
 

In this work, we have presented the two moments (mean-variance) Mean Output 

Prediction Tree algorithm (MOPT), which is able to predict large amounts of massive 

temporal data sets. The proposed algorithm differs from the state-of-the-art regression 

algorithms in the splitting of each input and output feature to two moments according to the 

input time resolution and it can also identify the most appropriate prediction time resolution 

that minimizes the prediction error and builds more compact interval based regression tree.  

The two conducted experiments indicate that the proposed algorithm produces 

more accurate and compact models by comparison to the modern state-of-the-art regression 

tree algorithms. 
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