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Abstract: We evaluate the possible benefit from improving the workload distribution in a 
directed acyclic graph (DAG) (e.g. a project network), by determining a lower bound for the 
project completion time. It is shown that a lower bound can be obtained by equally distributing 
the workload over the max-cut in the graph which separates the nodes 1 and n. It is also 
shown that for a complete n-node DAG, practitioners can quickly compute a lower bound for 
the project completion time. The max-cut can be found by any linear programming algorithm 
or by reducing the problem to the problem of finding a maximum matching in a bipartite 
graph. Our results can help planners and project managers to characterize the "ideal case" in 
which the optimal workload distribution among the arc networks minimizes the project 
completion time. That can be done for a non-complete DAG as well as for a complete one. A 
lower bound can then be used to evaluate the maximum potential for reducing the project 
completion time in real-life cases. 
 
Key words: Project network; Directed acyclic graph (DAG); Max-cut; Maximum matching, 
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1. Introduction 
 

A reduction in project completion time is one of the main missions in project 
management and in similar processing contexts. We evaluate the possible benefit from 
improving the workload distribution in a directed acyclic graph (DAG) (e.g. a project 
network), by determining a lower bound for the project completion time. Revealing the lower 
bound of a project's completion time is critical for managers, as the lower bound gives 
significant information about the potential value for investing effort and management time 
for reducing the project completion time. If the planned processing time of a given 
plan/project is near the lower bound, the mangers can deduce that the potential reduction is 
small (large), and by that decide if it is worthwhile to spend effort and time in trying to 
accelerate the project. 

The objective of shortening the project completion time can be attained by 
additional budget and/or by redistribution of workloads, the latter being more economical 
but less feasible. The current common methodologies for shortening the project completion 
time are based on investment of additional budget in the critical path activities in 
deterministic models [1-2]5 or in the high criticality activities in stochastic models [3-6]. The 
procedures for optimal redistribution of budget among project activities ([1- 6]) enable the 
minimizing of the project completion time under budget constraints. The precedence among 
the project activities as well as the activities "crash" durations determine a lower bound for 
the project completion time. It is obvious that releasing the budget constraints by bringing all 
the activity execution times to “crash” paces, i.e., maximal execution speed can reveal the 
lower bound of the project completion time that can attained by additional budget. 

The problem of scheduling directed acyclic task flow graphs has been examined in 
many forms in information technology for multiprocessor systems. Hary and Oezguener [7] 
studied the problem of scheduling directed acyclic task flow graphs to multiprocessor systems 
using point-to-point networks. Ahmad et al. [8] surveyed 21 algorithms that allocate a 
parallel program represented by an edge-weighted directed acyclic graph to a set of 
homogeneous processors, with the objective of minimizing the completion time.  

Luh and Lin [9] claimed that it is possible to achieve minimum production time and 
increased productivity through the use of parallel operations in parts fabrication as well as in 
assembly, computation and control of industrial robots. However, the coupling between 
consecutive phases of the operations which results in series-parallel precedence constraints 
may, in turn, create unavoidable idle time intervals during the operations. Luh and Lin 
developed an algorithm that determines a minimum time-ordered schedule for the parallel 
operations. Their algorithm was based on the Program Evaluation and Review Technique 
(PERT). 

For over three decades now researchers have sought effective solution procedures 
for shortening the critical paths in PERT types scheduling problems under conditions of 
limited resources availability [10]. Phillips [11] presented a procedure for these problems 
with multiple parallel processors that locates and verifies an optimal schedule for a project, 
under conditions of multiple resource constraints. The procedure is network-based and uses 
a graphical cut-search-approach. The optimal solution can be obtained iteratively by 
constructing a minimum cost network flow problem and adjusting the durations of activities 
corresponding to a minimum capacity cut-set. Baker [12] showed that the same can be done 
simply by using linear programming formulation.   
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A shorter project completion time can be attained by subdividing the work 
breakdown structure (WBS), and/or by redistributing the workload among activities, if 
possible and feasible. Laslo et al. [13] introduced a linear programming optimization that 
can be implemented for redistributing removable workload fragments among project 
activities for minimizing the project completion time. This was done without violating the 
precedence relations within the project. 

One of the key features of project planning is the utilization of a WBS to show the 
hierarchy of tasks within a project and to define work packages [14]. The detailing of project 
tasks into sub-tasks can be done down to lower levels until reaching the level where the sub-
tasks finally become manageable units (so-called work packages) for planning and control 
[15]. Detailing of project tasks and precedence relationships is theoretically an economic 
option for shortening the project completion time. The detailing of project tasks is unlimited, 
but one must take into consideration the manageability of the project, i.e., the DAG size that 
has to be determined by the number of arcs and by the number of nodes. Over-detailing 

increases the nodes and the arcs of the DAG up to 
n
2
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

 arcs in a complete n-node DAG. 

However, [16] proved that random acyclic digraphs have only n2/4 arcs on average.   
The lower bound of the n-node DAG completion time is determined by taking into 

account the "ideal case" in which the optimal workload distribution among the given arc 
networks minimizes the project completion time. One important objective of this paper is to 
characterize the properties of this "ideal case". An additional objective is to show how to find 
for a pre-given total workload and a pre-given DAG this "ideal case", i.e. to compute a 
lower bound of the project completion time. To solve the problem of determining the optimal 
workload distribution, we use a special form of the max-flow problem, a special form of the 
maximum matching problem and Dilworth’s Theorem [17]. 

The paper proceeds as follows: Section 2 defines the problem; Section 3 presents 
the linear programming solution for workload distribution; Section 4 presents a solution for 
the same problem by combinatorial optimization; Section 5 presents an algorithm for finding 
a max-cut of a DAG; Section 6 suggests a closed-form formula to compute the size of the 
max-cut of a complete DAG; and Section 7 concludes the paper. The main contributions of 
this paper for practitioners are that we propose a simple algorithm to find a max-cut in a 
DAG which is needed for lower bound computation and a closed-form formula to compute 
the size of the max-cut of a complete DAG. 

 
2. Problem definition 

 
Let us consider an activity-on-arc directed acyclic graph G( N ,A )  where N  is a 

set of n  nodes, topologically sorted, and A  is a set of m  arcs denoted by i , jA . Each of the 

m  arcs has one unit of processing capacity, in which case we can consider the arc workload 

as the processing time of this arc.  The graph G( N ,A )  has one source node 1N  and one 

sink node nN . The i , jA 's arc workload i , jt  is a non-negative variable. All the series paths in 

the graph, denoted by pP  and with length pT , start at the source node 1N  and end at the 
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sink node nN . Let us also consider unlimited options for distributing the spread-out 

cumulative total workload T  among the arcs i , jA , i.e., the workload distribution is subject 

to 

i , j

i , j
A A

T t
∈

= ∑ .  

The task execution time of a DAG is equivalent to the length of the longest path, 

i.e., the critical path, c pT max(T )= . The most favorable planning for a given DAG is that 

in which the cumulative spread-out workload T  is distributed such that it minimizes the 
critical path. The solution for the most favorable planning of workload distribution problem 

denoted, by MP( G,T ) , is any feasible solution 
i , ji , j A A{ t }τ ∈=  that minimizes the 

objective function c pT max(T )=  subject to 

i , j

i , j
A A

T t
∈

= ∑ . Thus, the solution of the 

MP( G,T )  problem is equivalent to finding a lower bound for the project completion time.  

For the remainder of the paper we use the following notation: 

A  - a set of m  arcs. 

i , jA  - an arc (arrow), i , jA A∈ . 

D
i, jA  - a dummy arc with i , jt 0= , D

i, jA A∈ . 

E
i, jA  - an effective arc with i , jt 0> , E

i, jA A∈ . 

G( N ,A )  - an activity-on-arc directed acyclic graph. 

m  - the number of arcs i , jA A∈ . 

N  - a set of n  nodes, topologically sorted. 

kN  - the k -th node, kN N∈  1 k n≤ ≤ . 
n  - the number of nodes kN N∈ . 

pP  - the p -th path starting at the source node 1N  and ending at the sink node 

nN . 
q  - the number of paths. 
r  - the minimal number of paths that covers the m  network arcs i , jA A∈ . 

sτ  - the number of effective arcs E
i, jA A∈  in a feasible solution τ . 

T  - the cumulative total spread-out workload 

i , j

i , j
A A

T t
∈

= ∑ . 

cT  - the task execution time, which is the joint workload of the critical path, 
c pT max(T )= . 

pT  - the joint-workload on pP ,  
p

i , j

p
i , j

A P
T t

∈

= ∑ . 

i , jt  - the i , jA 's workload (variable), i , jt 0≥ . Since each i , jA  has one unit of 

processing capacity i , jt  can be considered as the processing time. 
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τ  - a feasible distribution, 
i , ji , j A A{ t }τ ∈= . 

( , )X X  - a cut-set of arcs induced by a set X  of nodes that includes 1N  ,and its 

complement X  that includes nN ; each arc jiA ,  in the cut-set has its tail in 

X and its head in X . 

π  - a set of paths pP  that covers all the arcs i , jA A∈ . 

 
3. The linear programming solution for  
the workload distribution problem 
 

The MP( G,T )  problem can be set as a special case of a flow linear programming 

problem for any n -node graph. Let iT  be the time of completing all the activities ending at 

node i . Then the linear programming formulation for the problem is: 

nMin T  

s.t. 

1 0T =  

, , ,
2,..., ; 1, 2,...,1; { }j i i j i j A Ai j

T T t j n i j j t ∈− ≥ = = − −  

,
{ }, ,

i j
ti j A Ai j

t T
∈

=∑  

0 1,...,iT i n≥ =  

Now let us consider an example of a DAG with n 5= , m 8=  and, q 5=  as 

presented in Figure 1. 

 
Figure 1. Directed acyclic graph 
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The linear programming formulation for this example is: 

5Min T  

s.t. 

1 0T =  

2 1 1,2 0T T t− − ≥  

4 1 1,4 0T T t− − ≥  

5 1 1,5 0T T t− − ≥  

3 2 2,3 0T T t− − ≥  

4 2 2,4 0T T t− − ≥  

5 2 2,5 0T T t− − ≥  

5 3 3,5 0T T t− − ≥  

5 4 4,5 0T T t− − ≥  

1,2 1,4 1,5 2,3 2,4 2,5 3,5 4,5t t t t t t t t T+ + + + + + + =  

, ,0i j i jt A A≥ ∀ ∈ . 

 
The two optimal basic solutions for this example are presented in Table 1.  
 
Table 1. The optimal workload assignment for minimizing the execution time 

Variable Optimum I Optimum II 
t1,2 0 0 
t1,4 0.2T 0.2T 
t1,5 0.2T 0.2T 
t2,3 0.2T 0 
t2,4 0.2T 0.2T 
t2,5 0.2T 0.2T 
t3,5 0 0.2T 
t4,5 0 0 
Tc 0.2T 0.2T 

 

Linear programming is an easy way to solve small MP( G,T )  problems, but it has 

disadvantages. The first disadvantage is that it needs many variables and many constraints 

that must be compiled and satisfied. The linear programming formulation for n-node DAG 

has up to 
n

1
2
⎛ ⎞⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎜⎝ ⎠

 constraints, 
n

m
2
⎛ ⎞⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎜⎝ ⎠

 viable arrows and n 2q 2 −=  paths. The second 

disadvantage is that with linear programming it is more difficult to explore solution 

properties. Therefore, in the following sections we present a procedure to solve MP( G,T )  

problems by combinatorial optimization 
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4. A solution for the workload distribution problem  
by combinatorial optimization 
 

Now we use a combinatorial optimization to derive a solution for the n -node 

graph workload distribution problem MP( G,T ) . As the following theorems show, some 

interesting results can be obtained by combinatorial optimization.  
Theorem 1 states that an optimal distribution of the cumulative spread-out 

workload T  is obtained by uniform distribution of T over the arcs of some maximum 

directed cut which separates nodes 1N  and nN . We define a directed cut as the set of arcs 

formed by a partition of the node-set N  to two parts X , X  so that 1 , nN X N X∈ ∈  and 

the set of arcs directed from X  to X  is empty. The arcs which belong to a cut are those 

which are directed from X  to X . Such a cut is denoted as ( )X ,X . The size of the cut is 

denoted by ( , )X X .  

Theorem 1. cmin(T )  with the cumulative spread-out workload T  equals 

{ }T max ( X ,X ) , where the maximum is over all the directed cuts ( , )X X that separate 

the nodes 1N  and nN . (The proof of Theorem 1 can be found in the Appendix. This proof 

used Lemma 1 and Dilworth's Theorem which also in the Appendix.) 

Theorem 2.  An arc is an effective arc E
i, jA  in some feasible solution τ  if it belongs to some 

max directed cut which separates nodes 1N  and nN . (For the proof see the Appendix.) 

It follows from Theorem 2 that sτ , the number of effective arcs E
i, jA  in a given 

feasible solution τ , is at least the size of a max directed cut which separates nodes 1N  and 

nN : s rτ ≥  

By a reduction to Dilworth's Theorem, as done in the proof for Theorem 1, we get 
the following corollary: 

Corollary 1. The problem MP( G,T )  is polynomially solvable by standard min-flow-max-

cut algorithms that solve Dilworth's problem. 
 

5. An algorithm for finding a max-cut of a DAG 
 

The proposed algorithm for finding a max-cut of a DAG is based on the concept of 
maximum matching (see [18], Section 26.3). The basic idea is to present the DAG by a 
bipartite graph and then to apply an algorithm for finding a maximum matching. 

Before describing and applying the algorithm, we need to recall some notions from 
matching theory. A matching M in a graph is a set of edges of which any two do not have a 
common end. Given a matching M in a graph, an alternating path with respect to M is a 
path whose edges alternate between matched edges and non-matched edges. An isolated 
vertex will also be considered as an alternating path although it is not an end of any edge. A 
vertex is called M-exposed if it is not an end of a matched edge.  
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The algorithm proceeds as follows: 
Step 1: Construct a bipartite graph H associated with the DAG. The vertex set of H is then 

constructed as follows.  For any arc jiA ,  we introduce two vertices: a start vertex 

S
jiA )( ,  and a finish vertex F

jiA )( , . Let S denote the set of start vertices and F denote 

the set of finish vertices. S and F partition the vertex set of the bipartite graph H into 

its two parts. The edge set of H consists of pairs of vertices ( S
jiA )( , , F

lkA )( , ) where the 

two arcs jiA ,  and lkA ,  belong to some directed path in the DAG starting at jiA ,  and 

ending at lkA , . An illustration of the bipartite graph H associated with the DAG in 

Figure 1 is given in Figure 2.  The bold edges form a maximum matching in H. 
 

 
Figure 2. Description of the directed acyclic graph (Figure 1) by a bipartite graph 
 
Step 2: Find a maximum matching M in H. Efficient algorithms for finding a maximum 

matching can be found in any combinatorial optimization book, e.g. [18]. 
Step 3: Scan the graph H in order to find all the vertices which belong to some alternating 

path starting at an M-exposed vertex of S. A vertex found by the scanning will be 
called a scanned vertex. This scanning is actually what is done before termination of 
any algorithm for finding a maximum matching, see [18]. 

Step 4:  
 

Look for the arcs jiA ,  of the DAG which were scanned exactly once at H (either the 

start vertex S
jiA )( ,  was scanned, or the finish vertex F

jiA )( ,  was scanned, but not 

both nor none of them) in Step 3. These arcs are the arcs of a max-cut in the DAG, 
see [19]. 
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Figure 3. Alternating paths and scanned vertices 
 
Figure 3 illustrates the alternating paths and the scanned vertices of the DAG that 

presented are in Figures 1 and 2. The alternating paths (see Figure 3) starting at M-exposed 

vertices of S are the isolated vertices of S, SSSS AAAA )(,)(,)(,)( 5,45,35,25,1  and the path 

))(,)(,)(( 4,25,44,1
SFS AAA . Therefore, the scanned vertices are 

SFSSSSS AAAAAAA )(,)(,)(,)(,)(,)(,)( 4,25,44,15,45,35,25,1 . The arcs of the DAG of which exactly 

one of their start vertexes and finish vertexes is scanned (Step 4) are 

4,25,35,25,14,1 ,,,, AAAAA . These are the arcs of a max-cut (see Figure 1). 

 

6.  The size of the max-cut of a complete DAG 
 

It is obvious that n-node DAG with the maximal number of viable arrows 

n
2
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

enables us to attain a better solution to the MP( G,T )  problem, or at least one that is 

no worse than the solution for an n-node DAG with 
n

m
2
⎛ ⎞⎟⎜ ⎟<⎜ ⎟⎜ ⎟⎜⎝ ⎠

 arcs. This is because each 

additional arc i , jA  can be loaded or remain unloaded. From Theorem 1 we get an 

additional corollary that enables us to easily calculate the size of a max-cut of a complete 

DAG, and from this to compute a lower bound for cT .  

Corollary 2.  If ( , )G N A  is the complete graph with n  nodes and 
n
2
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

 arcs, then the size of 

the max-cut is: { } 2nmax |( X , X )| 4
⎢ ⎥

= ⎢ ⎥
⎢ ⎥⎣ ⎦

,  

and as consequence, the cT  of an optimal distribution τ  of  T   for  MP( G,T )  is:  
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c
2
Tmin(T )

n
4

=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. (For the proof see the Appendix.) 

 
7. Summary and conclusions 
 

The aim of this paper was to evaluate the possible benefits from improving the 
workload distribution in a DAG (e.g. a project network), by determining a lower bound of the 
project completion time. We proved that a lower bound can be obtained by dividing the total 
cumulative processing time uniformly among the arcs on a max-cut set. That is the maximum 
parallel planning for a given DAG. We also presented a combinatorial algorithm for finding 
the max-cut, based on a maximum matching algorithm. The simple closed-form solution for 

the complete n-node DAG case 2 4n⎢ ⎥⎣ ⎦  
can be a very useful formula to calculate a lower 

bound of the completion time of any DAG.  

The value of the term ( )2/ 4 / ( , )T n T X X⎢ ⎥ −⎣ ⎦  
can be an indication of the 

benefit derived from further detailing of the project tasks and from increasing edges up to a 

complete graph. This is because the difference between 2 4n⎢ ⎥⎣ ⎦ , the max-cut size of a 

complete DAG, and ( , )X X , the max-cut size of any DAG, represents further potential for 

shortening the project completion time that can attained by more detailing of project tasks.  
The results in this paper can help planners and project managers to characterize 

the "ideal case" in which the optimal workload distribution among the arc networks 
minimizes the project completion time. That can be done for a non-complete DAG as well as 
for a complete one. A lower bound can then be used to evaluate the maximum potential for 
reducing the project completion time in real-life cases.  
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Appendix 

Lemma 1.  If 1 r{ P ,...,P }π= , 1 r q≤ ≤  is a cover of the arcs i , jA  by paths pP , 

1 p r≤ ≤  and τ  is a feasible solution, then 

(1) c TT
r

≥ . 

Moreover, if equality holds, then all paths in π  are of joint-workload pT T r=  and each 

arc i , jA  which is covered more than once by π  has workload i , jt 0= , i.e. it is a dummy or 

unnecessary arc D
i, jA . 
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Proof of Lemma 1.  Let π  be a cover of the arcs i , jA  by paths pP , 1 p r≤ ≤ , and let τ  

be a feasible solution.  Since τ  is a feasible solution, it satisfies the constraint 

i , j

i , j
A A

T t
∈

= ∑ .  

π  is a cover of the arcs and hence,  
 (2) 

p
i , ji , j

r r
p

i, j i , j
p 1 p 1 A AA P

T t t T
= = ∈∈

= ≥ =∑ ∑ ∑ ∑ , 

It follows that there must be a path pP  in π  satisfying, 
p

i , j

i , j
A P

t T r
∈

≥∑  and therefore 

cT T r≥ .  From (2) it follows that equality holds if all paths in π  have the same workload 

pT  and each arc i , jA , which is covered more than once by π , has workload i , jt 0= , i.e. 

each such arc should be classified as D
i, jA .    

The following theorem is a version of Dilworth's Theorem [4]. 

Dilworth's Theorem.  Let ( , )G N A  be an acyclic network where the nodes 1 nN ,... ...,N  

are topologically sorted and let d  be a non-negative integral function on the arc set A .  

Then, the minimum number of pP s which cover each arc i , jA  at least ,( )i jd A  times equals 

i , j

i , j
A ( X ,X )

max d( A )
∈
∑  where the maximum is over the cuts ( X ,X )  that separate the 

nodes 1N  and nN , i.e. 

i ,i

i , j
A ( X ,X )

max d( A )|1 X ,n X
∈

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪∈ ∈⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
∑ . 

Proof of Theorem 1.  Let ( , )X X  be a cut separating nodes 1N  and nN  of cardinality r .  

Also, let ( X ,X )τ  be the distribution of the cumulative spread-out workload T  obtained by 

distributing T  uniformly on the edges of the cut ( , )X X . Since every pP  contains a single 

arc of the cut ( , )X X  the following inequality is valid: 

(3) c c
( X ,X )

Tmin T ( ) T
r

τ τ≤ = . 

for any feasible solution τ .  
Since the above is true for any cut, it is also true for a cut with maximum cardinality and 
hence, 

(4) 

{ }
c Tmin T ( )

max |( X ,X )|
τ ≤ . 

On the other hand, let ( , )X X  be a cut that separates nodes 1N  and nN  of maximum 

cardinality and τ  be a distribution of the cumulative spread-out workload T  that minimizes 

the left-hand side of (4). By taking 1d ≡  in Dilworth's Theorem we get that the cardinality of 
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the cut ( , )X X  is equal to some covering π  of the arc set A  by paths pP . It follows from 

Lemma 1 that { }cT ( ) T max |( X , X )|τ ≥ .  This completes the theorem's proof.  

Proof of Theorem 2.  Let i , jA  be an arbitrary arc.  If  i , jA  belongs to some max-cut which 

separates nodes 1N  and nN , then the optimum solution ( X ,X )τ  assigns the workload 

i , jt T ( X ,X )=  to i , jA  and therefore it is an effective arc E
i, jA . Conversely, suppose i , jA  

doesn't belong to any max-cut which separates nodes 1N  and nN . We again apply 

Dilworth's Theorem with d equaling 1 everywhere except at the arc i , jA  where it equals 2.  

Since i , jA  doesn't belong to any max-cut which separates nodes 1N  and nN , it follows that 

any max-cut which separates nodes 1N  and nN  maximizes the objective function 

i , j

i , j
A ( X ,X )

d( A )
∈
∑ .  Therefore, by the theorem there is a cover π  of the arcs by paths pP  

that covers the arc i , jA  twice and has the cardinality of a max-cut. Thus by the last claim of 

Lemma 1, in any distribution τ  of T  for which inequality (1) holds with equality the arc i , jA  

is assigned i , jt 0= . But for cover π , which has the cardinality of a max-cut, a distribution 

τ  of T  fulfills equality in (1) if it is an optimum solution. Therefore, i , jA  is a dummy or 

unnecessary arc D
i, jA .  

Proof of Corollary 2.  By Theorem 1, the cT ( )τ  for an optimal distribution τ  of T  equals 

T  divided by the size of a max-cut which separates nodes 1N  and nN . When the given 

network is a complete network, the cut that separates nodes 1N  and nN  is the set of arcs 

connecting the first r  nodes 1 rN ,... ...,N  with the last n r−  nodes r 1 nN ,... ...,N+  for some 

r  (1 r n 1≤ ≤ − ). By straightforward calculus, the max-cut separates the first n 2  nodes 

( n 2⎢ ⎥⎣ ⎦  or n 2⎡ ⎤⎢ ⎥  when n  is odd) from the last n 2  nodes ( n 2⎡ ⎤⎢ ⎥ or n 2⎢ ⎥⎣ ⎦  when n  is odd) 

and is of size 2n 4⎢ ⎥
⎢ ⎥⎣ ⎦

.  
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