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Abstract: Our paper considers a “negotiation game” between two players which combines 
the features of two-players alternating offers bargaining and repeated games. Generally, the 
negotiation game admits a large number of equilibriums but some of which involve delay and 
inefficiency. Thus, complexity and bargaining in tandem may offer an explanation for 
cooperation and efficiency in repeated games. The Folk Theorem of repeated games is a very 
used result that shows that if players are enough patience, then it is possible to obtain a 
cooperative equilibrium of the infinite repeated game. By this paper, I demonstrate a new folk 
theorem for finitely repeated games and I also present the new found conditions (under stage 
number and minimum discount factor value) such that players cooperate at least one period in 
cooperative-punishment repeated games. Finally, I present a study-case for Cournot oligopoly 
situation for n enterprises behavior under finitely and infinitely repeated negotiations. In this 
case, I found that discount factor depends only on players number, not on different player’s 
payoffs. 
 
Key words: Negotiation Game; Repeated Game; Bargaining; Folk theorem; Bounded 
Rationality; Cournot oligopoly 

 
1. Introduction 
 

Our paper considers a “negotiation game” which combines the features of two-
players alternating offers bargaining and repeated games. The negotiation game in general 
admits a large number of equilibriums but some of which involve delay and inefficiency. 
Thus, complexity and bargaining in tandem may offer an explanation for cooperation and 
efficiency in repeated games. 

The Folk Theorem of repeated games is a very used result that shows if players are 
enough patience then it is possible to obtain a cooperative equilibrium of the infinite 
repeated game.  A few contributions on folk theorem shows that the result survives more or 
less intact when incomplete (Fudenberg and Maskin, 1986) or imperfect public (Fudenberg, 
Levine, and Maskin, 1994) information is allowed, or when the players have bounded 
memory (Sabourian, 1998). 
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These findings are made precise in numerous folk theorems3.
 
Each folk theorem 

considers a class of games and identifies a set of payoff vectors each of which can be 
supported by some equilibrium strategy profile. There are many folk theorems because there 
are many classes of games and different choices of equilibrium concept. For example, games 
may be repeated infinitely or only finitely many times. There are many different 
specifications of the repeated game payoffs. For example, there is the Cesaro limit of the 
means, the Abel limit (Aumann, 1985), the overtaking criterion (Rubinstein, 1979) as well as 
the average discounted payoff, which we have adopted. They may be games of complete 
information or they might be characterized by one of many different specifications of 
incomplete information. Some folk theorems identify sets of payoff vectors which can be 
supported by Nash equilibrium; of course, of more interest are those folk theorems which 
identify payoffs supported by subgame-perfect equilibrium. 

Our paper develop Benoit and Krishna’s (1985, 1993) idée developing a new folk 
theorem applied for finite repeated games. Player’s strategies are “trigger” strategies. 
Players start by adopting a cooperative strategy and will play the same strategy as long as 
the other players also play cooperative strategies. If one player deviates from cooperative 
strategy (due on greater payoff) starting next stage he will be “punished” and his payoff will 
be “minmax” payoff.  

Also, we found the conditions (the discount tare level) such that is is possible 
player’s cooperation, and the minimum stage number such that at lest one stage our players 
cooperate. 

Finally we present a study-case for Cournot oligopoly situation for n enterprises 
behavior under finitely and infinitely repeated negotiations, finding the discount factor level 
such that it is possible to enforce a cooperative behavior.      
 

2. Literature 
 

The Folk theorem gives economic theorists little hope of making any predictions in 
repeated interactions. However, as the aforementioned examples suggest, it seems that 
negotiation is often a salient feature of real world repeated interactions, presumably to 
enforce co-operation and efficient outcomes. Can bargaining be used to isolate equilibrium 
in repeated games?  

Busch and Wen (1994) analyze the following game: in each period, two players 
bargain - in Rubinstein’s alternating - offers protocol over the distribution of a fixed and 
commonly known periodic surplus. If an offer is accepted, the game ends and each player 
get his share of the surplus according to the agreement at every period thereafter. After any 
rejection, but before the game moves to the next period, the players engage in a normal 
form game to determine their payoffs for the period. The Pareto frontier of the disagreement 
game is contained in the bargaining frontier. The negotiation game generally admits a large 
number of subgame-perfect equilibrium, as summarized by Busch and Wen in a result that 
seems to be as the Folk theorem in repeated games.  

Considerable effort has gone into introducing considerations that reduce the 
equilibrium set of a repeated game. For instance, depending on the stage game, the set of 
equilibrium payoffs is known to shrink by varying degrees when complexity costs are 
(lexicographically) taken into account (Rubinstein, 1986, Abreu and Rubinstein, 1988, 
Piccione, 1992, Piccione and Rubinstein, 1993), when strategies and beliefs are restricted to 
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be Turing-computable (Anderlini and Sabourian, 1995, 2001), or when asynchronous choice 
is allowed (Lagunff and Matsui, 1997).  

Obara (2009) proves a folk theorem with private monitoring and communication 
extending the idea of delayed communication in Compte (1998) to the case where private 
signals are not correlated. 

We should mention that many folk theorem results without communication have 
been obtained recently. However, most of them assume almost perfect monitoring (Bhaskar 
and Obara (2002), Ely and Välimäki (2002), Hömer and Olszewski (2006), and Mailath and 

Morris (2002)).
4 

One exception is Matsushima (2004) that allows for noisy private 
monitoring. However he assumes a certain type of conditional independence of private 
signals as in Compte (1998). The result of this note may be useful to deal with noisy 
correlated private signals even without communication, but that is left for future research.  

Olson (1965) was among the first to formally pose the puzzle of group formation 
and cooperation, and this has provoked a large literature seeking to understand group 
behavior. Thorsten and Lim (2009) introduce two incentive mechanisms to sustain intra-
group cooperation with prisoner's dilemma payoffs. They examine three-agent groups where 
relations may either be triadic one person interacting with two others/or tripartite, where all 
agents interact. Due to shirking incentives, sustained group cooperation requires a system of 
endogenous enforcement, based on punishments and reward structure and they found that 
both can ensure cooperation. 

Fudenberg and Levine (2007) proves a Nash-threat folk theorem when players’ 
private signals are highly correlated. Ashkenazi-Golan (2004) assumes that deviations are 
perfectly observable by at least one player with positive probability and proves a Nash-threat 
folk theorem. These results, as well as the result of this note, apply to repeated games with 
two or more players. Finally, McLean, Obara and Postlewaite (2005) prove a folk theorem 
when private signals are correlated and can be treated like a public signal once aggregated. 
But this result requires at least three players. 

Also, there is an existing literature that seeks to model institutions and social 
networks in terms of endogenous enforcement. The use of incentive slackness in triadic 
relations to tie strategies across two party games or  domains, has been studied by Aoki 
(2001); Bernheim & Whinston (1990) while exogenous superior information or enforcement 
capability among group members compared to non- group members is used in (Fearon & 
Laitin 1996; Ghatak & Guinnane 1999). Moreover, such an institutional arrangement may 
itself be endogenous (Okada 1993).    

Fong and Surti (2008) study also the infinitely repeated Prisoners’ Dilemma with 
side payments and they found that Pareto dominant equilibrium payoffs are implemented by 
partial cooperation supported by repeated payments. That seems to confirm folk theorems 
for infinitely repeated games.  

The literature on repeated games with different time preferences is still relatively 
small. In an important contribution, Lehrer and Pauzner (1999) have studied how players in 
a repeated game exploit the difference in their time preferences by the intertemporal trade 
of instantaneous payoffs to enhance efficiency. Their paper provides the key insight that, by 
letting the impatient player consume more in the near future and the patient player consume 
more in the farther future, the set of feasible payoff vectors becomes larger than the convex 
hull of IR stage game payoffs identified by the folk theorem. They demonstrate that, keeping 
constant the relative patience of the players, as both become arbitrarily patient, they can 
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achieve outcomes in equilibrium that would be infeasible were their time preferences 
identical. 

Benoit and Krishna (1985, 1993) analyze particular folk theorems for finite 
repeated games. They show that under such hypothesis it is possible to reinforce collusive 
equilibrium that not require any binding agreements to ensure that players conform. An 
important example given by Benoit and Krishna show that for constant cost Cournot duopoly 
with linear demand it is possible to obtain enterprises cooperation if finite repeated game 
contains enough stages and discount factor is close to 1.  

 

3. The Model 
 
A (one-shot) game, G, in normal or strategic form, consists of a set of n players, the 

strategy sets of the players, and their payoff functions.  
Thus, we define G = (S1, S2,…, Sn; U1, U2 . . . , Un), where Si is player i's strategy 

space and RSUi →:  is i's payoff function, where S = S1 x S2 x ... x Sn. The strategy space is 

represented by player’s offers in negotiation process.  

We may also write n
i RSU →: as the function whose i-th component is Ui. We will 

assume that the strategy spaces are compact sets and that the payoff functions are 
continuous. G(T) denotes the game that results when G is successively played T times (T is a 
positive integer). Let δi ∈ (0, 1) be the i’th player discount factor ant T enough large 
(eventually ∞). 

For t = 1, 2,.. ., T if Ssi ∈  denotes the outcome of the game G( T) at time t, player 

i's average payoff in G(T) is given by ∑
=
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A strategy for player i in the game G(T) is a function si which selects, for any history 
of play, an element of Si.  A Nash equilibrium of G(T) is an n-tuple of strategies s*, such that 
for all i, and any strategy or for player i: 
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Let N(T) denote the set of Nash equilibrium outcome paths of G(T). We will assume 
that N(1) is not empty.  

Let iu  denote player i's minmax payoff and let mi ∈ Si denote a corresponding 

strategy combination. A payoff vector u  is said to  be  individually rational  if  for  all i: ui > 
vi. Again, for the game G, consider the set of all payoff vectors which may result from 
players' choices (the range of the function U). The convex hull of this set, denoted by F, will 
be called the feasible region of payoffs. Note that in both G and G( T), we are restricting 
attention to pure strategies only. The effect of this restriction is that minmax payoffs, which 
will play a significant role in what follows, may be higher than those attainable using mixed 
strategies.  

The notion of a subgame perfect equilibrium is made precise as follows:  
Definition: The  strategy profile a is a (subgame) perfect equilibrium of G(T) if (i) it 

is a Nash equilibrium of G(T), and (ii) for all T’ < T and all T’ period histories h (T’), the 
restriction of s to  h(T’) is also a Nash equilibrium of G(T –T’).  
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In our paper we use an alternative offer negotiation game. Each player makes 
offers at every stage but they don’t have the possibility to reject the opponent’s offer. We 
study next two different situations. For the first situation we consider the infinitely repeated 
negotiation and for the second case, the finitely repeated negotiation. 

We suppose there exist in our negotiation game three different types of solutions: 
minmax equilibrium, corresponding to a punishment situation, a cooperation solution and a 
deviation situation.  The relationships between the payoffs of these three strategies are: 
deviation payoff is greater than cooperation payoff that is greater than minmax payoff.  
  

First case: the three phases of the game are: 
• Cooperation phase (T’ periods) from t = 0 to t = T’ – 1, with cooperation payoffs; 
• Deviation phase – one period – for t = T’: with deviation payoff for the player that 

deviate; 
• Punishment phase starts from T’ + 1 phase and continue all the game for the player 

that deviate from cooperative strategy 
 

The variables: 
• vi – cooperative payoff; 

• D
iv – deviation payoff; 

• iu – minmax payoff/punishment payoff ; 

• Relationships: ii
D
i uvv >≥ ;  

•   δ   - minimum discount factor to cooperate; 

• δi  - player i discount factor. 

•  a parameter 
ii

i
D
i

uv
vu

A
−

−
= that shows the relative gap between deviation from 

cooperation payoff and punishment payoff.  
• T is the number of game stages and T’ is the stage where player i deviates from 

cooperative phase.    
 
A. Infinitely repeated games 

 
First we consider the situation of infinitely repeated game (T = ∞ ). Game solution 

of infinitely repeated game result from next theorem: 
 
Theorem 1. Folk Theorem  

Let G be a static, finite game of complete information and G(∞) the infinitely 

repeated game. Let iu the minmax payoff of G for any player i, so for any payoff vector   

v so that iuv ii )(, ∀> , there exists a minimum level of discount factor 1<δ , such that 

)1,()( δδ ∈∀  there exists a subgame perfect Nash Equilibrium that achieves v as average 

payoff. (see proof in Appendix) 
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This theorem show as also some interesting findings related to player’s behavior: 
 
The minimum level of discount factor such that the cooperation strategy depend on 

relative gain from deviation related on punishment possible to be implemented. Starting on 
these hypotheses we proof the following results: 

• If deviation payoff is close to cooperation payoff then players cooperates in every 
period of the game;  

• If cooperation payoff is close to punishment (minmax) payoff, then cooperative 
situation is not possible; 

• If deviation payoff is very large, then player’s cooperation is not possible for any 
period of the game. 

Corollary 1. If there exist a minimum level for discount factor δ  , then 
i

D
i

i
D
i

uu
vu

−

−
=δ . (1) 

This corollary shows the discount factor depends on deviation payoff, cooperation 
payoff and punishment payoff.   
 

Corollary 2.  If deviation payoff is close to cooperation payoff ( C
i

D
i uu → ) then 0→δ  

and players cooperates in every period of the game. 
 

Corollary 3.  If cooperation payoff is close to punishment payoff ( P
i

C
i uu → ), then 1→δ  

and cooperative situation is not possible. 
 

Corollary 4.  If deviation payoff is very large, ( ∞→D
iu ), then 1→δ  and players 

cooperation is not possible for any period of the game. 
 
B. Finitely repeated games 
 

In the second situation we consider the finitely repeated negotiation game, where T 
represents the final stage of the game.  The strategies and the payoffs situation still are the 
previous ones. The game phases are: 

• Cooperation phase (t’ periods) from t = 0 to t = T’ – 1; 
• Deviation phase – one period – for t =Tt’; 
• Punishment phase, for T - T’-1  periods (from t = T’ + 1 to t = T).  

  
The backward induction solution of finite repeated games shows that in every 

period of the game the players must play and repeat the Nash Equilibrium of stage game. 
However, a large number of authors show there exists equilibrium of repeated game 
different from repetition of Nash equilibrium of stage game (see Benoit-Krishna Theorem). 

 
Theorem 2. Benoit-Krishna Theorem 

Let G(T) a finite repeated game and *s a Nash equilibrium for stage game. Let ŝ a 

strategy such that )()ˆ( *susu > . Then it exists for T enough large, a time limit T’<T, such 
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finite repeated game equilibrium is ŝ  repetition for T’ periods and  *s  repetition for T – T’ 
periods. 

 
Benoit-Krishna theorem does not show the discount factor limit or the minimum 

number of game stages such that players cooperate.  
We solve this problems extending Benoit-Krishna Theorem. 
The first question we answer is: If T is enough large, which is the discount factor 

level starting players became the have a cooperative behavior?   
 

Corollary 5. If the discount factor not exceed 
i

D
i

i
D
i

uu
uu

−

−
 then cooperation is not possible. 

 

Corollary 6. There exists ( )10,∈δ , solution of the equation:  

 ( ) 011' =++⋅−+− AAi
TT

i δδ ,       (2) 

such that for every δδ >i  the players  cooperate for T’ periods.  

 
Corollary 7. If  T is very large, then the condition form C1 is satisfied and we retrieve the 

folk theorem with 
i

D
i

i
D
i

uu
vu

−

−
=δ , and δδ >i .  

   
If we know players discount factors, which is the necessary number of stages (T) 

need to played to be possible the cooperative situation? 
 
Corollary 8.  The minimum number of stages to can obtain a cooperative game for T’ stages 

is 
( )

δ
δδ

ln
]/)1ln[1' AATT −+⋅

+−> .      (3) 

Corollaries proof are retrieved in Theorem 3: 
  
Theorem 3 (Roman) 

Let G be a static, finite game of complete information and G(T) the finitely repeated 

game for T stages. Let iu the minmax payoff of G for any player i, so for any payoff vector 

v so that 1)(,)(, <∃∀> δiuv ii , (there  exists a minimum level of discount factor 1<δ ), for 

T enough large,  0')(),1,()( >∃∈∀ Tδδ  there exists a subgame perfect Nash Equilibrium 

that achieves v as average payoff for the first T’ stages and for T-T’ stages the Nash 

equilibrium is the strategy that achieves iu  as average payoff. 
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Proof 

We suppose also there exists a deviation payoff, )(max auv ia

D
i = > vi.  So 

ii
D
i uvv >≥ . vi represent the i’th player cooperation payoff, and  iu represent the 

punishment payoff. 
Player i will play vi for T’ periods with vi payoff, then deviate, and his payoff will be 

)(max auv ia

D
i = , and for the rest of the game (T-T’-1 stages) all other players will punish 

player i and he will receive minmax payoff iu . 

If  player i cooperates for T periods then his average cooperation payoff is: 

 ∑
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       (4) 

If  player i cooperates for T ‘ , then deviates at T’ +1 period and for the rest of the 

game (T-T’-1 periods) his payoff will be iu (punishment payoff) then his average deviation  

payoff is: 
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We found two different situations for our game. The first one give us the discount 
minimum level such that players cooperate (with  T and T’ done), and the second one show 
the minimum number of stages needs to repeat games such that at least T’ periods our 
players cooperates (if discount factor is done).  

So equilibrium condition such that players cooperate is: 
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Case. 1. For given δi > iδ  we find the minimum stage periods such that players cooperate: 

( )
i

ii AA
TT

δ
δδ

ln
]/)1ln[

1'
−+⋅

+−> , where 
ii

i
D
i

uv
vv

A
−

−
=  . 

 

Case 2. For given T and T’, ( )1,0∈iδ  is solution of equation: 

( ) 0111' =++⋅−⋅ +− AA i
TT

i δδ        (2) 

 
Obs. It is easy to show there exists a unique solution of equation (1) in (0,1) interval.   
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Let ii
δδ max= . So there exists a minimum level of discount factor 1<δ , such 

that )1,()( δδ ∈∀  there exists a subgame perfect Nash Equilibrium that achieves v as 

average payoff.         q.e.d. 
 

4. Study-case: Cournot oligopoly application 
 

We consider the Cournot case of oligopoly with linear demand functions, with n 
identical enterprises. Let xi denote the quantities of a homogeneous product produced by 
enterprise i. Let    P(X) = a – b X, (and b > 1) be the market clearing price function, where X 

is the aggregate quantity on the market ( ∑
=

=
n

i
ixX

1
). More precisely, inverse demand 

function is 
⎩
⎨
⎧

≥
<−

=
baXfor

baXforXba
XP

/,0
/,

)(  . 

We assume that the total cost for firm i is Ci (xi) = c xi
 .  For simplicity, there are no 

fixed costs for firm i and the marginal cost is equal with average cost and constant, c (we 
assume also c < a/b). Following Cournot suppose that the firms choose their quantities 

simultaneously. Each firm’s strategy space can be represented as ),0[ ∞=iS , the 

nonnegative real numbers. In this case a strategy is a quantity choice, xi . From players 
rationality principle, neither firm will produce a quantity xi > a/b (otherwise P(X) = 0 and no 
firm will have a positive profit).  The payoff for firm i will be represented by profit function: 

( ) ii

n

i
iiiiiii xcxxPxCxXPxx ⋅−⋅=−⋅= ∑

=
−

1
)()()(,π .    

 (where )1121 ,...,,,...,,( niii xxxxxx +−− = ), quantities vector chosen by other players). 

 
A. One stage game 
a. Non-cooperative game situation  
 
We obtain the Cournot-Nash equilibrium solving for each firm the problem: 

( ) ii

n

i
iSxiiiSx

xcxxPxx
iiii

⋅−⋅= ∑
=

∈−∈ 1

* )(max,maxπ      (7) 

 
 The first order conditions for i’s firm optimization problem is both necessary and 

sufficient (if cbax j −< /* , as well be shown to be true), it yields: 
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n

jij
ji xbca

b
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,12
1

, i,j = 1,…,n          (8) 

 
 Solving the linear equation system (8)  we obtain Cournot –Nash solution:  

 
b
ca

n
xi

−
⋅

+
=

1
1*            (9)   
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which is indeed less than a/b – c, as assumed. 
 

 The i’s player payoff is: 
( )
b
ca

ni

22

1
1 −

⋅⎟
⎠
⎞

⎜
⎝
⎛

+
=π         (10)  

 for non-cooperative situation, that represents also the minmax payoff. 
 
b. The cooperative situation 
  

We obtain the solution of cooperative situation solving following problem: 
 

( ) XcXXPX
ii SXSX

⋅−⋅=Π
∈∈

)(maxmax ,       (11) 

where ∑
=

=
n

i
ixX

1
, with equal payoffs for each player. 

 
First order conditions for (10) optimization problem is also both necessary and 

sufficient and we obtain: 

b
caX C −

⋅=
2
1

 , so 
b
ca

n
xCi

−
⋅

⋅
=

2
1

.     (12) 

Total payoff is:  

( )
2

2
1

⎟
⎠
⎞

⎜
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⋅=Π

ca
b

XC         (13) 

and each firm cooperation payoff will be:  

( )
2

2
1

⎟
⎠
⎞

⎜
⎝
⎛ −
⋅

⋅
=

ca
bn

xii
Cπ        (14) 

We can observe that  i
C
i ππ >  for n > 1 and b > 1,  so enterprise’s payoffs are 

greater if firm cooperates (that means they form a cartel)  rather them adopt a non-
cooperative behavior.  
 
c. The deviation situation 
 
 There is another situation which one firm deviate from cooperative behavior trying to 
maximize his payoff (profit). In this case player i maximize his payoff for given quantities 

from cooperative situation: njji
b
ca

n
x j ,...,1,,

2
1

=≠
−

⋅
⋅

= : 

( ) ii

n

ijj

C
jiSxii

C
jiSx

C
jiiSx

xcxxxbaxcxxxPxx
iiiiii

⋅−⋅+⋅−=⋅−⋅= ∑
≠=∈−∈−∈ ,1

)]([max),(max,maxπ      (15) 

 
 First order conditions for (15) optimization problem is also both necessary and 
sufficient and we obtain: 

b
ca

n
nxDi

−
⋅

⋅
−

=
4

13
         (16)   
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and the deviation payoff is  

( ) 2
2 )(

16
)13)(1( ca

bn
nnxii

D −⋅
⋅⋅
−+

=π .       (17) 

It is easy to verify that ( ) ( )iC
ii

D
i xx ππ >( , so it exist temptation to deviate from 

cooperative situation for any firm i.   
 
B. Infinitely repeated game 
    

For infinitely repeated game, the minimum discount factor so that companies 

cooperate is : 
i

D
i

i
D
i

uu
vu

−

−
=δ  (see formula 1),  so for our game we obtain: 
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for n > 1. 

We can observe that discount factor depends only on firm numbers in oligopoly. 
 

 
Table 1. Evolution of minimum discount factor depending on enterprieses number 

Enterprises number 
n 

Minimum discount factor 

δ  

2 0.0535 
3 0.0394 
4 0.0285 
5 0.0212 
6 0.0163 
7 0.0129 
8 0.0104 
9 0.0086 
10 0.0072 

 
 

C. Finitely repeated game 

If we consider to need at lest 20 stages of cooperation, for 
i

C
i

C
i

D
iA

ππ
ππ

−
−

= the 

minimum level for discount factor is (0,1) solutions of equation ( ) 0120 =++⋅− AAii δδ  

(see Corollary 6) are presented in table 2.  
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Table 2. Evolution of minimum discount factor depending on enterprises number and for 20 
stages of cooperation 

Enterprises number 
n 

Minimum discount factor 

δ  
A factor value 
 

Stage number 
 

2 0.1127 7.875 20 

3 0.1304 6.667 20 

4 0.1287 6.771 20 

5 0.1220 7.200 20 

6 0.1142 7.758 20 

7 0.1066 8.381 20 

8 0.0996 9.040 20 

9 0.0933 9.722 20 

10 0.0876 10.419 20 

 

5. Conclusions 
 

In this paper I present the enterprises behavior on repeated negotiations. Based on 
new folk theorem for finitely repeated games I found conditions such that players cooperate 
at least some stages even backward induction told as this situation is not an Nash subgame 
perfect equilibrium. Other findings in this paper are: 

• For infinitely repeated negotiations there exists the possibility to implement a 
cooperative solution if player’s discount factor is close to 1 and cooperative payoff 
are not fare away from deviation payoff and punishment payoffs; 

• If deviation payoff is very large or cooperation payoff is close to punishment payoff 
then it is not possible to obtain a cooperative solution for infinitely repeated 
negotiations; 

• For finitely stages negotiations, first rational solution is to repeat Nash equilibrium of 
stage game every period (backward induction); 

• Another solution for finitely repeated games depends on limited (bounded) 
rationality of players: they starts with cooperative strategies and continue so on until 
one of other players deviate from cooperative strategy. Starting on this moment of 
negotiation, the other players punish deviating player for all periods until 
negotiations end. In this case it is possible to obtain some cooperative stages of the 
game but this situation is more complex; 

• Even we have the minimum stage number, if players discount factor is smaller like a 
certain level, cooperation it is not possible; 

• If the deviating payoff is enough large, the cooperation also it is not possible for any 
period of the game; 

• If the cooperative payoff is closer to the punishment payoff, then cooperation it is not 
possible; 

• There exists a minimum stages number such that it is possible to implement a 
cooperative behavior; 

• If stage number and cooperation stage number are known then it is possible to find 
the discount minimum level such that players cooperate.     
 



  
Quantitative Methods in Enterprises  

Behavior Analysis under Risk an Uncertainty 
 

 
13 

My study-case shows that it is possible to reinforce a cooperative behavior between 
players that play Cournot oligopoly following bounded rationality and trigger strategies. 
Also, we find that discount factor minimum level does not depend on payoff‘s levels, only 
dependency factor is firm number. As long as firm number increases, we obtain a lower level 
of discount factor and if n tend versus infinity then δ is closer to zero and all players 
cooperates all game stages.       
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Appendix 
 

Proof of Theorem 1 (Folk Theorem).  

Suppose that there exists a pure strategy such that vau =)(  (with uv > ) and 

every player will play next strategy: „ I will play ai at stage 0 and I will continue to play  ai such 
time previous period all players played a. Anywhere I’ll play  minmax strategies for the rest of 
the game.” How it is this possible for player i to improve his payoff playing this strategy? 

We suppose also there exists a deviation payoff, )(max auv ia

D
i = > vi.  So 

ii
D
i uvv >≥ . 

Player i will play ai for t periods with vi payoff, then deviate, and his payoff will be 

)(max auv ia

D
i = , and for the rest of the game all other players will punish player i and he 

will receive minmax payoff iu . 

So average deviation payoff at t stage is:  

i
tD

i
t

i
t
iD uvuu 1)1()1( ++⋅−+−= δδδδ  

This payoff is greater like vi as long as discount factor δi is smaller like a minimum 

level of discount factor iδ , given by relationship: 

iii
D
ii vuv =⋅+⋅− δδ )1(  

So 
i

D
i

i
D
i

i uv
vv

−
−

=δ .  

Let ii
δδ max= . So there exists a minimum level of discount factor 1<δ , such 

that )1,()( δδ ∈∀  there exists a subgame perfect Nash Equilibrium that achieves v as 

average payoff.          
q.e.d. 

 
 
Proof of Theorem 2 (Benoit-Krishna Theorem).  

To proof this theorem we use players rationality principle, so that our players try to 

maximize total payoff. If they play *s  strategy T periods then their mean payoff is: 
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If they play for T’ periods ŝ  strategy and Nash equilibrium *s  for T – T’ periods 
then expected payoff is: 
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So, for each player is better to play at least T’ periods strategy ŝ , that is not a Nash 

equilibrium for stage game.   
          q.e.d.  

 


