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Abstract: This paper’s purpose is twofold: first it addresses the adequacy of some theoretical 
information criteria when using finite mixture modelling (unsupervised learning) on 
discovering patterns in continuous data; second, we aim to apply these models and BIC to 
discover patterns of coronary heart disease. In order to select among several information 
criteria, which may support the selection of the correct number of clusters, we conduct a 
simulation study, in order to determine which information criteria are more appropriate for 
mixture model selection when considering data sets with only continuous clustering base 
variables. As a result, the criterion BIC shows a better performance, that is, it indicates the 
correct number of the simulated cluster structures more often. When applied to discover 
patterns of Coronary Heart Disease, it performed well, discovering the known pattern of 
data. 
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1. Introduction 
 

As a technique of intelligent data mining, Finite mixture models (FMM)  has proven 
to be a powerful tools for clustering analysis, namely in the domain of social, human and 
behavioural science data, (Dias and Willekens 2005), and in particular in segmentation, 
(Punj and Stewart 1983), (Fonseca and Cardoso 2007b). There have been numerous 
proposals of information criteria for the selection of the number of clusters (model selection) 
of FMM.  

The main goal of this research is to address the performance of specific theoretical 
information criteria for mixture modelling selection, when dealing with the continuous 
clustering base variables. A simulation study is conducted for this purpose which results may 
help to support future analysts’ decisions concerning the choice of particular information 
criteria when dealing with specific clustering applications. Mainly, we want to know which 
criterion we should select in advance, knowing that clustering base variables are continuous. 
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This paper is organized as follows: in section 2, we define notation and review 
finite mixture models, and previous work on the EM algorithm for the estimation of mixture 
models; in section 3, we review several model selection criteria proposed to estimate the 
number of clusters of a mixture structure; in section 4, we present the proposed simulation 
based approach to compare the performance of eleven information criteria; in section 5 we 
report on simulation results, and finally, in section 6 we present some concluding remarks, 
about BIC and Coronary Heart Disease application. 
 

2. Clustering via Mixture Models 
 

For illustrating the use of mixture models in the field of cluster analysis, see for 
instance (McLachlan and Peel 2000), (McLachlan 1997),  (Figueiredo and Jain 2002). FMM 
assume that parameters of a statistical model of interest differ across unobserved or latent 
clusters and they provide a useful means for clustering observations. In FMM, clustering base 
variables are assumed to be described by a different probability distribution in each latent 
cluster. These probability functions typically belong to the same family and differ in the 
corresponding parameters’ values.  

This approach to clustering offers some advantages when compared with other 
techniques: provides unbiased clusters memberships’ estimates and consistent estimates for 
the distributional parameters, (Dillon and Kumar 1994); it provides means to select the 
number of clusters, (McLachlan and Peel 2000); it is able to deal with diverse types of data 
(different measurement levels), (Vermunt and Magidson 2002). In order to present FMM we 
give some notation below (Table 1). 

The mixture model approach to clustering assumes that data are from a mixture of 
an unknown number S of clusters in some unknown proportions, Sλλ ,,1 . The data 

)y,...,y(y
n1

=  are assumed to be a p-dimensional sample of size n, from a probability 

distribution with density 

)
1

|()|( ∑
=

=
S

s
siysfsiyf θλψ ,  (1) 

 
where the mixing probabilities satisfy 

0≥sλ , s = 1, ..., S, and 1
1

=∑
=

S

s
sλ  (2) 

 
Table 1. Notation 

n sample size 

S number of (unknown) segments 

)Y,,Y( P1  P segmentation base variables (random variables) 

)y,,y(
n1  measurements  on variables p1 Y,,Y  

iy  measurements vector of individual i on variables p1 Y,,Y  

),...,1( nzzz =  segments-label vectors 

( )iS1ii z,...,zz =  binary vector indicating segment membership 

),(x zy=  complete data 
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p(d)f 
) 

probability (density) function 
 

sθ  vector of all unknown p(d)f parameters of  the sth segment 

( )S1...θθ=Θ  vector of mixture model parameters, without weights 

)1,,( 1 −= sλλλ  vector of weights (mixing proportions) 

isτ  
probability that an individual i belongs to the sth segment, given 

 ),( Θ= λψ  vector of all unknown mixture model parameters  

)ˆ,ˆ(ˆ Θ= λψ  estimate of the vector of all unknown parameters 

L likelihood function, L(ψ ) 

LL 
 

log-likelihood function, log L(ψ ) 

 
cLL  complete-data log-likelihood function  

ψn  number of mixture model parameters 

 
 

The complete set of parameters we need to estimate, to specify the mixture model 
is 

{ } { } { }ss θθλλλλψ ,,   and  , 1,,  , ,  11 =Θ−=Θ= . 

The log-likelihood function for the parameters is 

)|(
1 1

      log    )(  log siysf
n

i

S

s sL θλψ ∑
=

∑
=

=  (3) 

When dealing with Mixture Models for clustering purposes, we may define each 

complete data observation, )iz,y(ix
i

= , as having arise from one of the clusters of the 

mixture (1). Values of clustering base variables 
i

y  are then regarded as being incomplete 

data, augmented by segment-label variables, isz ,  that is, )isz,...,(ziz i1=  is the unobserved 

portion of the data; isz  are binary indicator latent variables, so that s)iz(isz =  is 1 or 0, 

according as to whether iy  belongs or does not belong to the sth  segment, for i = 1,…,n, 

and s = 1, …S. 
Assuming that { }iZ  are independent and identically distributed, each one 

according to a multinomial distribution of S categories with probabilities Sλλ ,,1 , the 

complete-data log-likelihood to estimate ψ , if the complete data )iz,y(ix
i

=  was 

observed, (McLachlan and Krishnan 1997), is  

}log)s|i(slog{ 
n

1i

S

1s
is    )(cL log syfz λθψ +∑

=
∑
=

=  (4) 

With the maximum likelihood approach to the estimation of ψ , an estimate is 

provided by a suitable root of the likelihood equation 

O   
)L( log 
=

∂

∂

ψ

ψ
 (5) 

Fitting finite mixture models (1) provides a probabilistic clustering of the n entities in 
terms of their posterior probabilities of membership of the S clusters of the mixture of 
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distributions. Since the ML estimates of most of the latent segment model (1) cannot be 
found analytically, estimation of FMM iteratively computes the estimates of clusters posterior 
probabilities and updates the estimates of the distributional parameters and mixing 
probabilities, (Kim, Street, and Menezer 2002). 

Expectation-maximization (EM) algorithm, (Dempster, Laird, and Rubin 1977), is a 
widely used class of iterative algorithms for ML estimation in the context of incomplete data, 
e.g. fitting mixture models to observed data. 

Since, typically with mixture model approach, the likelihood surface is known to 
have many local maxima the selection of suitable starting values for the EM algorithm is 
crucial, (Biernacki, Celeux, and Govaert 2003) or (Karlis and Xekalaki 2003). Therefore, it is 
usual to obtain several values of the maximized log-likelihood for each of the different sets 
of initial values applied to the given sample, and then consider the maximum value as the 
solution. Also, in order to prevent boundary solutions, the EM implementation may recur to 
maximum a posteriori estimates. 

 

3. Model selection 
 
Selecting FMM structures may rely on multiple information criteria, like, for instance, BIC, 
ICOMP, AIC, which turns opportune the specific issue concerning the selection among 
several criteria themselves.  
 
Table 2. Some information criteria for model selection on Latent Segment Models 

Criteria Definition Author  

AIC ψ2n2LL +−  (Akaike 1973) 

AIC3 ψ3n2LL +−  (Bozdogan 1994) 

AICc 1)ψn1))/(nψ(nψ(2nAIC −−++  (Hurvich and Tsai 1989) 

AICu 1))ψnnlog(n/(nAICc −−+  (McQuarrie, Shumway, 
and Tsai 1997) 

CAIC logn)(1ψn2LL ++−  (Bozdogan 1987) 

BIC/MDL lognψn2LL +−  (Schwarz 1978) / 
(Rissanen 1978) 

CLC 2EN(S)2LL +−  (Biernacki 1997) 

ICL_BIC 2EN(S)BIC +  (Biernacki, Celeux, and 
Govaert 2000) 

NEC L(1)))EN(S)/(L(SNEC(S) −=  (Biernacki, Celeux, and 
Govaert 1999) 

AWE logn)(3/2ψ2nc2LL ++−  (Banfield and Raftery 
1993) 

L 1)/2ψS(n2)S/2log(n/1/12)slog(nλ/2)ψ(nLL +++∑+−  (Figueiredo and Jain 
2002) 

 
On the other hand, applications are common in the clustering domain, which refer 

to clustering base variables; also the criterion selection could be based on convergence 
property. In the present study we propose an approach for evaluating several (see table 2) 
information criteria’s performances, taking into account theirs relationship with continuous 
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clustering base variables. Information criteria all balance fitness, trying to maximize the 
likelihood function, and parsimony, by using penalties associated with measures of model 
complexity, trying to avoid overfit. The general form of information criteria is as follows 

CL +− )ˆ(log2 ψ , (6) 

where the first term is the negative logarithm of the maximum likelihood which decreases 
when the model complexity increases; the second term or penalty term penalizes too 
complex models, and increases with the model number of parameters. Thus, the selected 
FMM should evidence a good trade-off between good description of the data and the model 
number of parameters. 

AIC (Akaike 1973) and AIC3  (Bozdogan 1994) are measures of model complexity 
associated with some criteria (see table 2) that only depend on the number of parameters; 
some other measures depend on both the number of parameters and the sample size, as 
AICc (Hurvich and Tsai 1989), AICu (McQuarrie, Shumway, and Tsai 1997), CAIC (Bozdogan 
1987), and BIC/MDL (Schwarz 1978) / (Rissanen 1978) ; others depend on entropy, as CLC 
(Biernacki 1997), and NEC (Biernacki, Celeux, and Govaert 1999); some of them depend on 
the number of parameters, sample size, and entropy, as ICL-BIC (Biernacki, Celeux, and 
Govaert 2000) , and AWE (Banfield and Raftery 1993) ; L (Figueiredo and Jain 2002) 
depends on the number of parameters, sample size and mixing proportions, sλ . 

 

4. Methodology 
 

Several model selection criteria have been used in order to decide on the number 
of clusters that are present in data, when a priori knowledge does not exist, such as 
graphical techniques, likelihood ratio tests and theoretical information criteria. This work 
specifically refers to information criteria presented in table 2, which have been referred 
previously. This issue is in limelight, because there is no indication concerning the selection 
of the information criteria themselves, in a certain application, (Fonseca and Cardoso 2007). 
In this paper we try to establish a relationship between type of clustering variables - 
continuous - and the performance of information-based criteria. We also illustrate other 
factors that may influence the outcome, such as clusters’ separation and sample size. When 
we have a mixture of normal components (1≤ s≤ S), the probability (density) function of an 

observation iy , conditional on entity i belonging to segment s, is given by 

⎟
⎠
⎞

⎜
⎝
⎛ −−∑−−

∑
= )(1T)(

2
1

 exp  
2/1||2/)2(

1
)|( siyssiy

s
piy

s
f μμ

π
ψ  (7) 

Here, { }sθλψ ,= , with ),,( sss ∑= μθ  the elements of components means, sμ , 

and the distinct elements of the segment-covariance matrices s∑ , s = 1,…S. To evaluate the 

performance of the information criteria presented in Table 2 and robustness across 
experimental conditions, a simulation study is conducted. Because special care needs to be 
taken before arriving at conclusions based on simulations results, we performed some 
replications within each cell. The experimental design controls the number of variables, the 
number of clusters, the sample size, and the number of distributions; thus, data sets were 
simulated with two levels (p = 2 and p = 4) of clustering base variables, two levels of 
clusters (S = 2 and S = 4), three different distributions, and three levels of sample size (100, 
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500 and 2000); the simulation plan uses a 22×32 factorial design with 36 cells (see table 3). 
For S = 2, we fixed the missing proportions at λ1 = 0.3 and λ2 = 0.7; for S = 4 we fixed the 
missing proportions at λ1 = λ2 = λ3 = λ4 = 0.25. Within each cell 5 data sets were generated, 
so we work with 180 samples.  
 
Table 3. Factorial design for continuous variables 

Yi S n 
Number of 

Distributions 
 

2; 4 2; 4 
100; 500 

2000 
3 

 
Factorial 
design 

2 2 3 3 22*32 

 
In order to avoid local optima in the generated FMM estimation process, the EM 

algorithm is repeated 50 times with random starting centres, and the best solution for ML 
and model selection results are kept, with a tolerance level of 10-6 (the criterion for 
convergence of EM: difference between log-likelihood being smaller than 10-6 ). 
 

5. Results of simulated experiments 
 

Table 4 shows the percentage of cases (simulated experiments) each criterion 
determines the original (true) number of segments (fit), across the used factors, the overall 
percentages underfit (percentage of times each criterion selects a model with a few number 
of segments), and overfit (percentage of times each criterion selects a model with a high 
number of segments). 

The best performance goes to BIC (overall 93%), followed by AIC3 (overall 89%) and 
AICu (overall 88%). AIC3 also performs very well, yielding the best performances when 
sample size decreases (85% for n = 100, against BIC 80%) and when the segment’s number 
and variables’ number increases (87% for S = 4 and p = 4, against BIC’s 80%). Moreover, 
BIC only overfits and underfits on 1% and 6% of the times, respectively. As we could expect, 
other criteria, such as ICL-BIC, NEC, L, and AWE, almost never overfit; instead, they underfit 
a lot of time. 

Concerning sample size BIC (80%) is outperformed by AIC3 (85%), only when n = 
100. 

 
Table 4. Simulation results for continuous experiments 

  BIC AIC AIC3 AICc AICu CAIC CLC ICL- NEC L AWE 

Fit 93 63 89 71 88 85 67 74 56 75 64 

Underfit 6 1 5 3 8 14 15 24 43 24 36 

O
ve

ra
ll 

Overfit 1 36 6 26 4 1 18 2 1 1 0 

100 80 72 85 83 77 69 45 65 51 55 49 

500 100 61 99 67 99 99 83 79 57 75 69 

Sa
m

pl
e 

si
ze

 

2000 87 63 81 60 87 83 76 71 52 84 71 
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2 
P=2 98 70 93 78 83 93 76 80 81 90 83 

2 
P=4 

100 53 98 67 100 100 78 98 93 100 93 

4 
P=2 

73 67 73 64 67 62 49 31 4 29 13 

 
N

um
be

r 
of

 
se

g.
/v

ar
ia

bl
es

 

4 
P=4 

80 40 87 58 73 76 42 76 18 49 44 

 
As far as the number of segments and variables number is concerned, BIC (80%) is 

only outperformed by AIC3 (87%). Nevertheless the number of variables and sample size, the 
simulation experiment results show that information criteria BIC is quite effective for FMM 
with continuous clustering base variables, in order to select the true model. 
 

AIC AIC3 AICc AICu AWE BIC CAIC CLC ICL-BIC L NEC
criteria

60,00

70,00

80,00

90,00

Fi
t

 
Figure 1. The true number of segments recovery (Fit), in percent 

 
Figures 1, 2, and 3 show the percentage of cases (simulated experiments) each 

criterion determines the original (true) number of segments (fit), across the used factors, and 
also the overall percentages overfit ,and underfit respectively. 
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Figure 2.  Criteria selecting models with more segments (overfit), in percent 
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As we can see from figure 2 (criteria select models with more segments, in %), AIC 
is the criterion which overfits more often, followed by AICc and CLC. Figure 3 (criteria select 
models with less segments, in %) shows that AIC almost never underfits; next, we have AIC3, 
AICu and AICc; we also can see that BIC almost never underfits on normal multivariate 
models. 
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Figure 3. Criteria selecting models with less segments (underfit), in percent 

 
 

6. Coronary Heart Disease Application 
 

In order to see the performance of these models and information criterion BIC, we 
analyze a dataset (n = 231) with known diagnostic classification (normal, premature, serious 
and permanent), and five continuous variables: NAOHDLCC, CHOLESTEROL, LDLC, HDLC, TG. 

In order to “guess” the diagnostic classification, we apply FMM approach, with 
information criterion BIC, and we display in table 5 the results for model selection. Because 
information criterion BIC presents an elbow for S = 4, we selected a model with four 
clusters, the true diagnostic classification, with relative sizes: 28, 23, 20, and 11 percent, 
respectively. 

Thus, we can conclude that these models, finite mixture modeling, with information 
criterion BIC for model selection, are good for discovering patterns in continuous data, in 
particular for guessing true diagnostic classification for coronary heart disease. 
 
Table 5. Model Selection (Information criterion BIC) 

Model LogL BIC 

1-Cluster -5570,87 11196,08 
2-Cluster -5309,55 10733,21 
3-Cluster -5175,43 10524,74 
4-Cluster -5080,44 10394,53 
5-Cluster -5027,73 10348,89 

 
As we can see from figure 4, the items NAOHDLCC, CHOLESTEROL, and LDLC are the 

most important ones, in order to discriminate between the four clusters. 
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 Figure 4. Conditional probabilities of four clusters 
 
 

7. Conclusions  
 

The results of this study help on developing a consistent way of selecting an 
appropriate information criterion for model selection when dealing with finite mixture 
modelling and continuous clustering base variables. 

As a result of the simulation study, BIC and AIC3 (followed by AICu) are the best 
performing criteria when dealing with continuous segmentation base variables; moreover, 
BIC selects the right model in 93% of the time (Figure 1 and table 4). We also can see that 
BIC almost never overfits (Figure 2), and rarely underfits (Figure 3). Thus we conclude that 
BIC is a good criterion to select the best model and so to discover patterns in continuous 
data. 

Finally, in order to compare the criteria performances, we run Friedman tests, 
because the data consist of b mutually independent k-variate random variables (Xi1,…,Xik), 
called b blocks, i=1,…,b; the random variable Xij is in block i (the factors in analysis) and is 
associated with treatment j (the criteria we use). 

Thus we run Friedman test for all the criteria in table 2, to test the null hypothesis 
that all the eleven means performances are identical. We reject the null hypothesis (Monte 
Carlo p-value of 0.000). Thus, we conclude that criteria performance was not identical for 
the eleven criteria in table 2, and we make multiple comparisons. 

Criteria i and j are considered to have different performance if the inequality 
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1

21

2 )1)(1(
)(2

1);1)(1(|| ⎥
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is satisfied, where
21);1)(1( α−−− kbt  is the value of distribution t with (b-1)(k-1) degrees of 

freedom, and Rj, F1 and F2 are given by 
 

[ ]
2

1 1
)(1 ∑ ∑

= =
=

b

i

k

j
ijXRF and ∑

=
=

k

j
jR

b
F

1

21
2 , with )

1
(∑

=
=

b

i
ijXRjR , 

where R(Xij) is the rank, from 1 to k, assigned to Xij within block i. 
 

 
Table 10  Matrix for multiple comparisons  

Criteria  BIC AIC AIC3 AICc AICu CAIC CLC ICL-BIC NEC L AWE 
 Ri 82,5 26,5 74,5 38 68 62,5 31 44,5 17,5 50,5 30,5 

BIC 82,5 0,0           

AIC 26,5 -56,0 0,0          
AIC3 74,5 -8,0 48,0 0,0         
AICc 38 -44,5 11,5 -36,5 0,0        
AICu 68 -14,5 41,5 -6,5 30,0 0,0       
CAIC 62,5 -20,0 36,0 -12,0 24,5 -5,5 0,0      
CLC 31 -51,5 4,5 -43,5 -7,0 -37,0 -31,5 0,0     

ICL-BIC 44,5 -38,0 18,0 -30,0 6,5 -23,5 -18,0 13,5 0,0    
NEC 17,5 -65,0 -9,0 -57,0 -20,5 -50,5 -45,0 -13,5 -27,0 0,0   
L 50,5 -32,0 24,0 -24,0 12,5 -17,5 -12,0 19,5 6,0 33,0 0,0  
AWE 30,5 -52,0 4,0 -44,0 -7,5 -37,5 -32,0 -0,5 -14,0 13,0 -20,0 0,0 
        

(
2
1

21

2 )1)(1(
)(2

1);1)(1( ⎥
⎦

⎤
⎢
⎣

⎡
−−

−
−−− kb

FFb
kbt α  = 18.4) 

 
Because we have 

2
1

21

2 )1)(1(
)(2

1);1)(1( ⎥
⎦

⎤
⎢
⎣

⎡
−−

−
−−− kb

FFb
kbt α  = 18.4, 

 
as we can see, we have |RBIC-RAICu| =14.5, |RBIC-RAIC3| =. 8, and |RAIC3-RAICu| =6.5, all less 
than 18.4; then, we can conclude that BIC, AIC3 and AICu have similar performances. They 
differ from all the others information criteria with relation with performance. 

To sum up, we conclude that for determining the number of segments, BIC, AIC3 
and AICu, with 93, 89 e 88 percent, respectively, perform very well when using FMM for 
discovering patterns in continuous data. Moreover, they perform well for several sample 
sizes and true number of segments, and they almost never overfit and underfit. 

Then we apply this criterion, with mixture models, in order to discover the patterns 
of coronary heart disease, and the results are very good, because this approach selects a 
model with four clusters, which was the known pattern of data. 
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