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Abstract: A deterministic PERT activity-on-arc network ( )ANG ,  with logical operation "AND" 

at the event's receiver and "MUST FOLLOW" at the event's emitter, is considered. Each activity 

( ) Aji ∈,  entering the model can be operated within several deterministic durations  ijt   

depending on the corresponding budgets  ijc   assigned to that activity. The problem centers 

on determining optimal budget values ijc  to be assigned to each activity ( ) Aji ∈,  in order 

to minimize the network's critical path subject to the restricted pregiven budget C  assigned to 

the whole project ( )ANG , . 
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1. Introduction 
 

A variety of publications (see Arisawa and Elmaghraby [1]7, Arsham [2], Ben-Yair 
[3], Deckro and Herbert [4], Golenko-Ginzburg [6-8], Howard [9], Kelley [10], Laslo [11-12], 
Panagiotakopoulas [13], Siemens [14], etc.) is related to stochastic network projects  (in the 

form of a graph ( )A,NG   comprising nodes Ni∈  and activities ( ) Aj,i ⊂  leaving node i  

and entering node j )  with random activity durations. For any activity ( )j,i  entering the 

network project ( )A,NG ,  it is assumed that: 

• the corresponding activity duration  ijt   depends parametrically on the budget  ijc   

assigned to that activity,   and 
  

• the budget value  ijc   satisfies 

 

    maxijijminij ccc ≤≤ , 

 

where  minijc   stands for the minimal budget capable of operating activity  ( )j,i ,  and  

maxijc   is the maximal budget required to operate activity ( )j,i . Both values minijc  and 

maxijc  are pregiven beforehand. 

 

Note that in case maxijij cc >  additional value maxijij cc −  is redundant. Thus, 

function  ( )ijijij cft =   can be implemented for any  ( ) ( )A,NGAj,i ⊂∈ .  The main 

objective of the time – cost trade-off procedure is to consider the relationship between the 
project duration and the total project costs. 

The main purpose of the time – cost trade-off can be stated as the development of 
the procedure to determine activity cost assignments to reduce as much as possible the 
project duration time under restricted total project's costs (usually pregiven). The classical 
time – cost model is as follows: 

Given a PERT graph ( )A,NG  together with functions ( )ijijij cft = ,  

( ) ( )A,NGj,i ∈ , and values  minijc  and maxijc , determine: 

 

• the minimal total project direct costs  C , 
  
 CniM ,                                        and (1) 

  

• the optimal assigned budget values  opt
ijc ,  subject to 

  
 ( ){ } DcftT opt

ijijijcr ≤= , (2) 
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{ }
∑ =

j,i

opt
ij Cc , (3) 

  
 

maxij
opt
ijminij ccc ≤≤  , (4) 

  
 where D  stands for a pregiven due date. 
 

Problem (1-4) is usually solved [4] by means of heuristic methods. In cases of non-

linear ijf  the problem becomes too difficult to be solved analytically [1]. 

In  [3, 7]  the trade-off model minimizes the allocated budget under given time 

chance constraint.  The extension of problem  (1-4)  for a random activity duration  ijt   is as 

follows: 

Given the PERT-COST project ( )A,NG  with random activity durations ijt , 

( ) ( )A,NGj,i ∈ ,  where for each activity ( )j,i  its probability density function (p.d.f.) ( )tpij  

depends parametrically on the budget ijc  assigned to that activity:  the problem is to 

minimize the project’s budget C  
 

CniM  , (5) 

 

as well as to determine the optimal budget volumes  opt
ijc   assigned to each activity  

( ) ( )A,NGj,i ∈   subject to  

 

[ ] pDctTPr opt
ijij ≥

⎭
⎬
⎫

⎩
⎨
⎧

≤ , (6) 

 

∑ ≤ Ccopt
ij , (7) 

 

maxij
opt
ijminij ccc ≤≤  . (8) 

 
Here: 
 

• [ ]opt
ijij ctT   stands for the project’s random duration on condition that all the activity’s 

durations are random values with  p.d.f.  ( )ijij ctp .  Value  [ ]opt
ijij ctT   can be 

determined either via simulation,  or by means of approximate analytical methods; 
  

• D   designates the pregiven due date; 
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• p   is the minimal value of the chance constraint  (pregiven by the project management 

as well). 
 

Problem (5-8) is a very complicated problem which even for medium-scale projects 
cannot be solved analytically.  It requires therefore heuristic solutions that are widely used 
nowadays in various design offices [7]. 

It can be well-recognized that even nowadays there do not exist both simple and 
effective time – cost optimization procedures. Moreover, even for most simplified 
deterministic activity-on-arc PERT networks where each activity can be operated with several 
rates by assigning several corresponding cost values for each activity, classical time – cost 
problems have not found as yet their solution. This refers both to minimizing the project's 
critical path duration by optimal allocation of the restricted project's budget among the 
activities, or to minimizing project's budget subject to the restricted critical path duration. 

In this study we suggest a simple heuristic procedure which enables to solve both of 
the outlined above problems. An activity-on-arc network with logical operation "AND" at the 
event's receiver and "MUST FOLLOW" at the event's emitter, is considered. Each activity 

( ) Aji ∈,  entering the network can be operated by ijn  different rates, i.e., within ijn  

different deterministic durations ijt  depending on ijn  corresponding budget values ijc  

assigned to that activity. Both the direct and dual problems center on determining the 

optimal budget assignment ijc  among all activities ( )ji,  in order either to minimize the 

critical path duration subject to restricted project's total budget (direct problem), or to 
minimize the total budget subject to restricted (from below) critical path length. 

The problems are solved by means of a simple heuristic procedure based on 
numerous critical path length calculations together with determining the so-called critical 
activity rates for each activity entering the project. The general idea is to diminish as much as 
possible the budget values assigned to activities with law critical rates, and to transfer the 
released budget for activities with high critical rates. 

A numerical example is presented. 
 

2. Definitions 
 

In order to proceed we require the following definitions: 
Definition 1. Call a PERT type deterministic network model properly enumerated if 

for any activity ( )ji,  entering the network relation ji <  holds. 

Definition 2. Call a list of activities entering a properly enumerated network a 

lexicographically ordered list if  any two different activities ( )11, ji , ( )22 , ji  are placed in the 

list according to the following rules: 

• if 21 ii < , ( )11, ji  is placed before ( )22 , ji ; 

• if 21 ii = , and 21 jj < , ( )11, ji  is placed before ( )22 , ji ; 

• in all other cases ( )11, ji  is placed after ( )22 , ji . 
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Definition 3. For each activity ( )ji,  entering a PERT type deterministic network 

model, its critical activity rate ijCAR  can be calculated as follows [6]: 

 

( ) ( )

( )[ ]max,,
1

jiLLTT

tTT
CAR

crcr

ij
e
i

l
j

ij ∗−

−−
−=  , (9) 

 
where: 

• ( )
l
jT  is the latest possible moment for event j  to occur; 

• ( )
e
iT  is the earliest possible moment for event i  to occur; 

• ( )[ ]max, jiLT  is the duration of the longest path connecting the source and the sink 

nodes and comprising activity ( )ji, ; 

• crT  is the duration of the critical path crL ; 

• ( )[ ]max,, jiLLT cr
∗  is the duration of the part of ( )max, jiL  which belongs to the critical 

path as well. 
 

Note that for all activities ( )ji,  belonging to the critical path, relation 1=ijCAR  

holds. 
 

3. Notation 
 

Let us introduce the following terms: 
 

( )A,NG  - deterministic PERT type network project; 

( ) Aji ∈,  - activity leaving node i  and entering node j ; 

M  - number of activities entering the project; 

( )ijij ct  
- deterministic activity duration depending on the budget value ijc  assigned to 

( )ji, ; 

ijn   
- 

number of different budget values which can be assigned to ( )ji, ; 

ijkc  - k -th budget value which can be assigned to ( )ji, , ijnk ≤≤1  (pregiven); 

values ijkc  are given in ascending order; 

ijkt  
- deterministic activity duration corresponding to value ijkc  (pregiven); it can be 

well-recognized that values ijkt  are given in descending order); 

crL  - critical path of network ( )A,NG ; 

( )max, jiL  
- the longest path connecting the source and the sink nodes and comprising 

activity ( )ji, ; 
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{ }ijcr cT  - critical path length obtained on the basis of duration ( )ijij ct ; 

( )
l
jT  

 
- 

the latest possible moment for event ( )ANGNj ,⊂∈  to occur; 

( )
e
iT  

 
- 

the earliest possible moment for event ( )ANGNi ,⊂∈  to occur; 

( )[ ]max,, jiLLT cr
∗  - duration of the intersection between crL  and ( )max, jiL . 

CΔ  - cost value step (pregiven); 

Tδ  - relative accuracy value to obtain a quasi-optimal solution (pregiven); 
ω  - iterative relative change; 

C  - total budget value assigned to project ( )A,NG  (pregiven). 

 
Note that relation 

 

{ }
Cc

ji
ij ≤∑

,
1  (10) 

 
holds, otherwise the problem has no solution. 
 

In case 
 

{ }
Cc

ji
ijn ij

≤∑
,

 (11) 

 

the problem obtains a trivial solution { }
ijijnc . 

 

4. The problem 
 

The problem is to determine for each activity ( )ji,  entering the project, quasi-

optimal values 
ijijc ε , ijij n≤≤ ε1 , in order to minimize the project's critical path length 

subject to the pregiven project's budget:  
 

{ }{ }
ij

ijij

ijcr
c

cTMin ε
ε ⎭

⎬
⎫

⎩
⎨
⎧

 (12) 

 
subject to 
 

{ }
Cc

ji
ij ij

≤∑
,

ε . (13) 

 



 

 
345 

Note that to determine an optimal combination of values 
ijijc ε  by means of an 

analytical lookover algorithm leads even for small- and medium-size projects ( 2015 ÷<M , 

53÷≈ijn ) to enormous computational efforts. This is why preference has to be given to 

more attractive and at the same time more realistic heuristic algorithms. The latter result in 
obtaining quasi-optimal values which usually meet most practical requirements. 
 

5. Heuristic algorithm 
 
We will apply a newly modified version of the model outlined in [4, 7]. The step-wise 
procedure of the algorithm is as follows: 
  
Step 1. Enumerate properly all the activities entering the project. 

 
Step 2. Order lexicographically the list of activities. 

 
It can be well-recognized that Steps 1-2 appear in most textbooks on project 
management, e.g. in [6]. 
 

Step 3. By any means reassign budget C  among the project's activities 

( ) ( )ANGAji ,, ⊂∈  subject to 

 
 

{ }
Cc

ji
ij =∑

,
 (14) 

 to obtain a feasible solution of the problem. One may suggest a variety of 

different methods to carry out Step 3 on the basis of (10), e.g. first to set 1ijc  for 

each activity ( )ji, , and afterwards to reallocate the remainder 
{ }

ℜ=− ∑
ji

ijcC
,

1  

among the activities. This can be carried out by consecutively adding value CΔ  
to all activities (being arranged in an lexicographical order) by honouring their 

maximal possible values 
ijijnc , until the remainder ℜ  will be totally exhausted. 

 
Step 4. Calculate the project's critical path length crT  for values ijc  and durations ijt  

obtained on Step 3. Call the obtained value ( )1
crT . 

 
 
Step 5. 

 

Calculate by means of (9) the activities' ijCAR  values. 

 
Step 6. Reorder the project's activities in descending order of their ijCAR  values. For 

( )ji,  with similar CAR  values place first activities with smaller lexicographical 

numbers. 
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Step 7. Choose the activity with the minimal ijCAR  value (i.e., in the right part of the 

list), on condition that its budget value ijc  may be decreased by value 

Ccc ijij Δ≥−=Δ 11  in order not to exceed the threshold level 1ijc .  Call that 

activity ( )ηη ji , . 

 
Step 8. Choose the activity with the maximal ijCAR  value (in the left part of the list), on 

condition that its budget value ijc  may be increased by value 

Ccc ijijnij
Δ≥−=Δ2  in order not to exceed limit 

ijijnc . Call that activity 

( )γγ ji , . 

 
Step 9. Transfer cost value ( )21,min ΔΔ=Z  from ( )ηη ji ,  to ( )γγ ji , . Calculate 

ηηηη jiji CZC ⇒− , 

γγγγ jiji CZC ⇒+ . 

 
Step 10. Check inequality 1ηηηη jiji CC > . If inequality holds, calculate 11 Δ=−

ηηηη jiji CC  

and go to Step 8. In case 1ηηηη jiji CC = , i.e., 01 =Δ , apply the next step. 

 
Step 11. Calculate new values ijt  for all activities entering the project. 

 
Step 12. Calculate value crT  on the basis of Step 11.  Call this value ( )2

crT . 

 
Step 13. Calculate the iterative change 

 
 ( ) ( )

( )1

21

cr

crcr

T
TT −

=ω  (15) 

 to compare the latter with the relative accuracy Tδ . 

 
Step 14. If Tδω > , apply the next step. Otherwise go to Step 16. 

 
Step 15. Set ( ) ( )12

crcr TT ⇒ . Go to Step 5. 

 
Step 16. The heuristic algorithm terminates. Value ( )2

crT  obtained at Step 12, set { }ijc  

determined at Step 9 as well as values { }ijt  calculated at Step 11 are taken as 

quasi-optimal values of the problem's solution. 
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It can be well-recognized that the general idea of Steps 7-10 is to diminish the 

assigned budget for activity ( )ηη ji ,  with the minimal CAR  to its minimal value 1ηη jiC  in 

order to reassign the gained reserve value 1Δ  among activities with higher CAR  values. 

Note that the number of those activities may be more than one. 

In certain cases Step 9 may be simplified by substituting value Z  for value CΔ . 
Although such a substitution increases the number of iterations, it simplifies the solution 
procedure and refines the algorithm's accuracy. 

The outlined above algorithm solves the direct time-cost optimization problem (12-

13). As to the dual time-cost problem with pregiven project duration D  
 

CMin  (16) 

subject to 
 

{ } DcT
ijijcr ≤ε , (17) 

 

{ }
Cc

ji
ijnij

≤∑
,

, (18) 

it can be easily solved by consecutive increasing C  by CΔ  and later on solving the direct 

problem (12-13). Increasing value C  proceeds until relation (17) starts to hold. 

 

6. Numerical example 
 

We will consider a small-scale PERT-COST type project comprising 12 activities with 
deterministic activity durations. The project's initial data is presented in Table 1. The project's 

budget 111=C , cost value step 1=ΔC , relative accuracy 01.0=Tδ . 

By implementing Step 3 of the heuristic algorithm (see Section 5) the trivial feasible 

budget reassignment among activities is as follows: 912 =C , 1313 =C , 1414 =C , 

1023 =C , 1425 =C , 726 =C , 534 =C , 1035 =C , 1536 =C , 745 =C , 546 =C , 

256 =C . 

Table 1. The  project's  initial  data 

ji,  ijC  ijt  

1, 2 6, 7, 8, 9 10, 8, 6, 5 
1, 3 10, 11, 12, 13, 14 28, 26, 24, 20, 18 
1, 4 10, 11, 12, 13, 14, 15 18, 17, 16, 14, 12, 10 
2, 3 9, 10 ,11 15, 13, 11 
2, 5 12, 13, 14, 15 12, 11, 10, 8 
2, 6 6, 7, 8 22, 18, 14 
3, 4 2, 3, 4, 5, 6 18, 17, 16, 15, 12 
3, 5 8, 9, 10 ,11 12, 10, 8, 6 
3, 6 14, 15, 16 10, 8, 6 
4, 5 5, 6, 7, 8 12, 11, 10, 9 
4, 6 4, 5, 6 20, 16, 12 
5, 6 1, 2, 3  15, 10, 6 



 

 
348 

The computational process of the algorithm is represented in Table 2: 
 
Table 2. Iterative  computational  process  of  budget  reassignment 

( )ji,
 

ijC  ijt  CARij ijC  ijt  CARij ijC  ijt  CARij ijC  ijt  CARij ijC  ijt  CARij ijC  ijt   

 
1, 2 

 
 9 5 0.9 9 5 1 9 5 0.89 9 5 0.89 9 5 0.89 9 5 

 
1, 3 

 
13 20 1 14 18 1 14 18 1 14 18 1 14 18 1 14 18 

 
1, 4 

 
14 12 0.34 14 12 0.36 14 12 0.4 14 12 0.4 10 18 0.6 13 14 

 
2, 3 

 
10 13 0.9 10 13 1 11 11 0.89 11 11 0.89 11 11 0.89 11 11 

 
2, 5 

 
14 10 0.33 14 10 0.25 12 12 0.425 12 12 0.5 12 12 0.436 12 12 

 
2, 6 

 
7 18 0.42 7 18 0.375 7 18 0.46 7 18 0.5 7 18 0.51 7 18 

 
3, 4 

 
5 15 1 5 15 1 6 12 1 6 12 1 6 12 1 6 12 

 
3, 5 

 
10 8 0.32 10 8 0.32 10 8 0.36 8 12 0.64 11 6 0.286 8 12 

 
3, 6 

 
15 8 0.24 14 10 0.28 14 10 0.3125 14 10 0.357 14 10 0.37 14 10 

 
4, 5 

 
7 10 1 7 10 1 7 10 1 8 9 0.9375 8 9 1 8 9 

 
4, 6 

 
5 16 0.8 5 16 0.8 5 16 0.8 5 16 1 6 12 0.8 6 12 

 
5, 6 

 
2 10 1 2 10 1 2 10 1 3 6 0.9375 3 6 1 3 6 

 
Th

e 
ite

ra
tiv

e 
pr

oc
es

s 
te

rm
in

at
es

 
crT  55 53 50 46 45 45 

Itera- 
tion 
No. 

Feasible solution 1 2 3 4 5 

 
Iterative change ω  

 
0.036 0.056 0.08 0.022 0 

 
It can be well-recognized that the iterative quasi-optimization process took only 4 

iterations in order to reduce the critical path length from 55=crT  (trivial feasible solution) 

to 45=crT  (the quasi-optimal solution). Thus, the iterative procedure proves to be efficient. 

Unfortunately, we have not proved the convergence of the heuristic algorithm. 
The quasi-optimal solution is as follows: 

912 =C , 1413 =C , 1014 =C , 1123 =C , 1225 =C , 726 =C , 634 =C , 1135 =C , 

1436 =C , 845 =C , 646 =C , 356 =C  (quasi-optimal Version A), or 
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912 =C , 1413 =C , 1314 =C , 1123 =C , 1225 =C , 726 =C , 634 =C , 835 =C , 

1436 =C , 845 =C , 646 =C , 356 =C  (quasi-optimal Version B). 

 
Both versions yield in the same result. 

 

7. Conclusions 
 
1. The newly developed algorithm is easy in usage and effective in practice. Its 

implementation requires mostly no more than 3÷5 iteration. 
 

2. The algorithm has been widely used both for medium- and large-scale projects with the 
number of activities exceeding 50÷100. In all cases the algorithm performed well and the 
number of iterations did not exceed 5. 
 

3. The algorithm can be realized on the basis of classical algorithms which are widely used 
in network planning and are described in many textbooks on project management. 
 

 
4. 

The model suggested in this paper is open for various modifications: e.g., instead CAR  

values other terms defining the closeness of activities to the critical area and, thus, the 
level of their influence on the project's duration, may be implemented. However, those 
modifications are not essential from the principal point of view. 
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