

Quantitative Methods Inquires

179

IMPROVING THE PERFORMANCE OF SPARSE LU MATRIX
FACTORIZATION USING A SUPERNODAL ALGORITHM

Bogdan OANCEA
PhD, Associate Professor, Artifex University, Bucharest, Romania

E-mail: oanceab@ie.ase.ro

Abstract: In this paper we investigate a method to improve the performance of sparse LU
matrix factorization used to solve unsymmetric linear systems, which appear in many
mathematical models. We introduced and used the concept of the supernode for unsymmetric
matrices in order to use dense matrix operations to perform the LU factorization for sparse
matrices. We describe an algorithm that uses supernodes for unsymmetric matrices and we
indicate methods to locate these supernodes. Using these ideas we developed a code for
sparse LU matrix factorisation. We conducted experiments to evaluate the performance of this
algorithm using several sparse matrices. We also made comparisons with other available
software packages for sparse LU factorisation.

Key words: sparse matrices; linear algebra; LU factorisation

1. Introduction

The numerical solution for large sparse linear systems lies at the heart of many
engineering and scientific applications like macroeconometric models, linear programming,
semiconductor device simulations, computational fluid dynamics.

The problem of solving sparse symmetric positive definite systems of linear
equations on sequential processors is fairly well understood. Normally, the solution process
is performed in two phases:

• First, the matrix A is factorized, LUA = where L is a lower triangular matrix with 1s

on the main diagonal and U is an upper triangular matrix; in the case of symmetric
positive definite matrices, we have A=LLt.

• Second, we have to solve two linear systems with triangular matrices: bLy =

and yUx = .

While the problem of solving sparse symmetric positive definite systems of linear
equations is well understood, for unsymmetric systems it is difficult to design high
performance algorithms because the pivoting needed in LU factorization generates dynamic
and unpredictable amount of work and intermediate results.

For positive definite systems, the solution is computed in three phases:
• Symbolic factorization to determine the nonzero structure of the Cholseky factor;
• Numeric factorization;

Quantitative Methods Inquires

180

• Solution of two triangular systems;
Elimination trees (Liu, 1990) are the standard way to reduce the time and space for

symbolic factorization. For numeric factorization there are two high performance solutions:
the supernodal method and the multifrontal method (Duff, 1983). Supernodal and
multifrontal methods allow the use of dense vector operations for nearly all of the floating-
point computation, thus reducing the symbolic overhead in numeric factorization. Overall,
the Megaflop rates of modern sparse Cholesky codes are nearly comparable to those of
dense solvers.

2. The generalization of supernodes for unsymmetric LU factorization

For unsymmetric systems, where pivoting is required to maintain numerical stability,
the performances of the software packages are below the ones for symmetric systems.

The research has concentrated on two basic approaches for unsymmetric systems:
submatrix-based methods and column-based methods.

Submatrix methods typically use some form of Markowitz ordering with threshold
pivoting, in which each stage's pivot element is chosen from the uneliminated submatrix by
criteria that attempt to balance numerical quality and preservation of sparsity.

Column methods typically use ordinary partial pivoting. The pivot is chosen from
the current column according to numerical considerations alone; the columns may be
preordered before factorization to preserve sparsity. In column methods, the preordering for
sparsity is completely separate from the factorization, just as in the symmetric case. This is an
advantage when several matrices with the same nonzero structure but different numerical
values must be factored. However, symbolic factorization cannot be separated from numeric
factorization, because the nonzero structures of the factors depend on the numerical pivoting
choices. Thus column codes must do some symbolic factorization at each stage.

In this paper we describe a solution of sparse LU factorization using a left looking
column method with partial pivoting.

In our method, preordering for preserving sparsity is completely separate from the
factorization process, but symbolic factorization cannot be separated from numeric
factorization because the structure of factors changes dynamically due to the pivoting. In
order to speedup the numerical factorization we use a generalized version of supernodes for
unsymmetric matrices.

The idea of a supernode is to group together columns with the same nonzero
structure, so they can be treated as a dense matrix for storage and computation. Supernodes
were originally used for symmetric sparse Cholesky factorization. In the factorization A = LLT
(or A = LDLT), a supernode is a range (r:s) of columns of L with the same nonzero structure
below the diagonal; that is, L(r:s; r:s) is full lower triangular and every row of L(s:n; r:s) is
either full or zero.

Using the supernodes improves the LU factorisation because of the following (we
considered the influence of supernodes on the left-looking LU factorization) (Gilbert, 1993):

1. The inner loop has no indirect addressing and thus sparse Level 1 BLAS is
replaced by dense Level 1 BLAS;
2. The outer loop can be unrolled to save memory references and Level 1 BLAS can
be replaced by level 2 BLAS operations;

Quantitative Methods Inquires

181

3. Elements of the source supernode can be reused in multiple columns of the
destination supernode to reduce cache misses - level 2 BLAS is replaced by Level 3
BLAS.
For a symmetric positive definite matrix, a formal definition of a supernode can be

given in terms of elimination tree (Liu, 1990). A supernode is a maximal set of contiguous
nodes {j, j+1, … j+w} such that

])[(},...,2,1{])[(wjTAdjwjjjjTAdj GG +∪+++=

In matrix terms,])[(jTAdjG indicates the nonzero elements in column j of the factor

L. In other words, a supernode is a maximal block of contiguous columns in the Cholesky
factor L where these columns have identical nonzero structure below the diagonal and the
corresponding block diagonal is full triangular.

It is possible to use a generalization of the supernode concept for the unsymmetric
matrices. In this case, a supernode is a range (k:t) of columns of L with the triangular
diagonal block full and the same structure below the diagonal block. In figure 1 we have
represented a sparse matrix A and its factors F = L + U. Using the above definition of
supernodes, matrix A has 7 supernodes : {1, 2, 3}, {4}, {5}, {6}, {7, 8}, {9}, 10, 11, 12}.

The effect of supernodes in Cholesky factorization is that all updates from columns
belonging to a supernode are aggregated into a dense vector before the sparse update of
the current column. This process of columns update can be implemented using Level 2 BLAS
matrix-vector multiplications. It is even possible to use supernode-supernode update which
can be implemented with Level 3 BLAS operations.

1 2 3 4 6 7 8 9 10 12
1

5 11

2
3
4
5
6
7

9
8

10
11
12

1 2 3 4 6 7 8 9 10 12
1

5 11

2
3
4
5
6
7

9
8

10
11
12

x

x

x
x
x x

x

x

x

x
x
x

x

x

x

x

x

x
x

x

x

x
x
x
x
x

x

x
x
x
x

xx

x
x

x

x

x
x
x
x
x

x
x
x
x
x

x
x
x
x
x

x
x
x

x

x

x
x

x

x

x

x

x

x

x
x

x

x

x
x
x

x

x
x

x
x

x

x

x
x

x

x

x

x

A F
Figure 1. An example of a sparse matrix and its factors L and U

Supernodes are only useful if they actually occur in practice. The occurrence of
symmetric supernodes is related to the clique structure of the chordal graph of the Cholesky
factor, which arises because of fill during the factorization. Unsymmetric supernodes are
harder to characterize, but they also are related to dense submatrices arising from fill.

In sparse Cholesky factorization, supernodes can be determined during the initial
symbolic factorization which is not the case of unsymmetric LU factorization where the
nonzero structure cannot be determined before numeric factorization. In order to obtain
larger supernodes we must permute the columns of L to bring toghether columns with the
same nonzero structure.

Quantitative Methods Inquires

182

In Cholesky factorization this reordering can de obtained by a postorder traversal of
the elimination tree. The postorder etree is used to locate the supernodes before numerical
factorization. The analog for etree in the case of an unsymmetric matrix is the column
elimination tree (Gilbert, 1993). The column etree of A is the symmetric elimination tree of
the column intersection graph of A, or equivalently the elimination tree of ATA provided
there is no cancellation in computing ATA (Gilbert, 1993). The column etree can be
computed from A in time almost linear in the number of nonzeros of A by a variation of an
algorithm of Liu (Liu, 1990).

It can be shown that column elimination tree represents the dependence between
columns of U and L, and for strong Hall matrices there is no other information obtainable
from the structure of the original matrix A (Gilbert, 1993). Before we factor the matrix A we
determine its column elimination tree and permute its columns according to a postorder on
the tree.

In figure 2 we present a description of the algorithm used for unsymmetric LU
factorization. The advantage of the supernode-column updates consists in using efficient
Level 2 BLAS operations, while in the simple column algorithm there are only Level 1 BLAS
operations. The presence of the pivoting process precludes the separation of symbolic from
the numeric factorization. Thus, the symbolic factorization for each column is computed just
before the numeric factorization of that column. The structure of the column j can be
determined by a traversal of the directed graph G associated with matrix L(:, 1:j-1)t (Gilbert,
1993). The depth-first traversal of G determine the structure of U(:, j) and the columns of L
that updates the column j. At the end of the symbolic factorization of column j we can
determine very easy if column j is part of the same supernode as column j-1.

for each column j = 1 to n do
 c = A(:,j); c is the current column
 Determine the set S of the supernodes from L which
 updates column j;
 Verify if column j is part of the same supernode as
 column j-1;
 for each supernode in S do
 c(k:t) = L(k:t, k:t)-1c(k:t);
 c(k+1:n)=c(k+1,n)- L(k+1:n, k:t) c(k:t);
 endfor
 find the index i of the pivot, c(i) = maxi=j:nc(i)
 swap c(i) and c(j);
 U(1:j,j)= c(1:j), L(j:n) = c(j:n)/c(j);
endfor
Figure 2. The supernodal LU factorization algorithm

3. Experimental results

We have implemented the supernodal LU factorization using the C programing
language and we have conducted a series of experiments on several sparse matrices. We
have used a system with an INTEL CORE 2 processor at 1.6 GHz with 1 GB of main memory.
The experimental matrices are from the Harwell Boeing collection. These matrices are
presented in table 1 and they are factored using the natural order and using an approximate
minimum degree ordering algorithm (Davis, 2002).

Quantitative Methods Inquires

183

Table 1. Test matrices: n is the number of lines/columns and nnz is
the number of nonzero elements

Matrix n nnz(A) nnz(A)/n
SHERMAN3 5005 20033 4
SHERMAN5 3312 20793 6.27

FS7601 760 5976 7.86
FS7602 760 5976 7.86
FS7603 760 5976 7.86
ORSIRR2 886 5970 6.73

In our implementation, we used the ATLAS (Automatically Tuned Linear Algebra

Software) library as a high performance implementation of the BLAS.
Table 2 presents the performance of the supernodal LU factorization with natural

ordering of the matrix A and table 3 presents the case with matrix A reordered with the
approximate minimum degree algorithm. This results show that the approximate minimum
degree ordering improves the sparsity of factors as we expected. The mflops rate of sparse
supernodal factorization is about 70% of the dense LU factorization. The dense factorization
performance was measured with the standard ATLAS - BLAS implementation and LAPACK
package.
Table 2. Performance of supernodal LU factorization using natural ordering

Matrix MFLOPS nnz(L) nnz(U)
SHERMAN3 212.98 548571 548571
SHERMAN5 280.06 409095 998665

FS7601 291.77 201627 207257
FS7602 291.78 207378 208907
FS7603 296.08 207378 208024
ORSIRR2 200.01 66027 79763

Table 3. Performance of supernodal LU factorization

using the aproximate minimum degree ordering

Matrix MFLOPS nnz(L) nnz(U)
SHERMAN3 279.57 184086 184086
SHERMAN5 251.80 93357 118436

FS7601 161.9 16535 18206
FS7602 161.08 17094 19479
FS7603 157.80 17532 52003
ORSIRR2 200.01 66027 79763

We compared the performance of the supernodal LU factorization implementation

with a multifrontal factorization package – UMFPACK 5.2. UMFPACK uses a multifrontal
algorithm. Where the outer loop of a left-looking algorithm like supernodal LU is over
columns of the factors being computed, the outer loop of a multifrontal algorithm is over
pivots being eliminated. All the updates created when a block is eliminated are computed at
once and stored as a dense update matrix. Before a block of pivots is eliminated, all the
update matrices contributing to that block are summed into a frontal matrix. The elimination
step can use Level 2 or Level 3 BLAS because the arithmetic is carried out on the dense
frontal matrix. Some extra intermediate storage is needed to record update matrices that
have not yet been assembled into frontal matrices, and some extra data movement is
needed for the assembly. UMFPACK does not use a column preordering; rather, it chooses

Quantitative Methods Inquires

184

row and column pivots to balance considerations of stability and sparsity by using
approximate Markowitz counts with a pivot threshold. In principle, the pivot threshold can
lead to a less accurate solution than strict partial pivoting; in practice, the lost accuracy can
usually be retrieved by iterative refinement of the solution. In principle, the freedom to
choose both row and column pivots dynamically could lead to sparser factors than strict
partial pivoting; in practice, some matrices have sparser factors by one method and some by
the other.

UMFPACK does not include an initial column ordering step. For the initial column
ordering in supernodal LU factorization, we ran the aproximate minimum degree algorithm
(Davis, 1997) on the structure of ATA. We reported times for ordering and factorization
separately. In applications where many matrices with the same nonzero structure but
different values are factored, the cost of column ordering can be amortized over all the
factorizations; in applications where only a single matrix is to be factored, preordering is part
of the solution cost.

Table 4 and 5 shows the time needed for LU factorisation using our supernodal
algorithm and the UMFPACK. Table 6 shows the memory requirements for the two
approaches.

Table 4. Performance of supernodal LU factorization and UMFPACK using natural ordering

Matrix Supernodal Factorization (msec) UMFPACK Factorization (msec)
SHERMAN3 560 710
SHERMAN5 670 780

FS7601 48 57
FS7602 51 55
FS7603 45 72
ORSIRR2 54 53

Table5. Performance of supernodal LU factorization and UMFPACK using

the aproximate minimum degree ordering

Matrix Supernodal Factorization (msec) UMFPACK Factorization (msec)
SHERMAN3 832 1002
SHERMAN5 932 1210

FS7601 75 89
FS7602 78 92
FS7603 70 81
ORSIRR2 80 93

Table 6. Memory requirements for LU factorization using

the supernodal approach and UMFPACK.

Matrix Supernodal Factorization (MB) UMFPACK Factorization (MB)
SHERMAN3 3.67 5.87
SHERMAN5 3.83 6.01

FS7601 1.22 2.23
FS7602 1.25 2.32
FS7603 1.22 2.24
ORSIRR2 1.44 2.98

Quantitative Methods Inquires

185

It can be observed from this figures that the supernodal approach performs slightly
better for five from the six matrices used for tests. Although there is not a clear difference
betwenn two aproaches, the supernodal algorithm can be used with succes for large sparse
systems.

The supenodal LU factorization algorithm can be improved further on machines
with a memory hierarchy by changing the data access pattern. The data we are accessing in
the inner loop include the destination column j and all the updating supernodes to the left
of column j. Column j is accessed many times, while each supernode is used only once. In
practice, the number of nonzero elements in column j is much less than that in the updating
supernodes. Therefore, the access pattern given by this loop provides little opportunity to
reuse cached data. In particular, the same supernode may be needed to update both
columns j and j+1. But when we factor the (j+1)st column, we will have to fetch the same
supernode again from memory, instead of from cache (unless the supernodes are small
compared to the cache). To exploit memory locality, we factor several columns (say s of
them) at a time in the outer loop, so that one updating supernode can be used to update as
many of the s columns as possible.

4. Conclusions

In this paper we presented an algorithm for sparse LU factorization using a
generalization of the supernode concept. The supernode for the unsymmetric matrices is a
range (k:t) of columns of L with the triangular diagonal block full and the same structure
below the diagonal block. We developed an algorithm for matrix factorization using
supernodes based on the clasical left-looking LU factorization.

We implemented this algorithm in a software package using the C programming
language and ATLAS library as a high performance implementation of BLAS. We tested our
implementation using some sparse matrices from the Harwell-Boeing collection. The results
of the tests shows that the sparse LU factorization using supernodes can achieve about 70%
of the performance for the dense LU factorization.

We also compared the sparse LU factorization using supernodes with a multifrontal
factorization package –UMFPACK. The results shows that the supernodal approach performs
slightly better than the multiforntal approach.

References

1. Davis, T.A., Gilbert, J.R., Larimore, S.I. and Ng, E. Approximate minimum degree ordering for

unsymmetric matrices, SIAM Symposium on Applied Linear Algebra, October, 1997
2. Davis, T.A. A column pre-ordering strategy for unsymmetric-pattern multifrontal method,

Technical Report TR-02-001, University of Florida, January, 2002
3. Demmel, W.D., Eisenstat, S.C., Gilbert, J.R., Li, X.S. and Liu, J.W.H. A supernodal approach to

sparse partial pivoting, SIAM J. Matrix, Anal. Appl. Vol 20, no. 3, 1999
4. Duff, I., and Reid, J. The multifrontal solution of indefinite sparse symmetric linear

equations, ACM Trans. Mathematical Software, 9, 1983
5. Eisenstat, S.C., Gilbert, J.R. and Liu, W. A supernodal approach to sparse partial pivoting

code, Householder Symposium XII, 1993

Quantitative Methods Inquires

186

6. George, J.A. and Liu, J. W. H. Computer Solution of Large Sparse Positive Definite Systems,
Prentice-Hall, Englewood Cliffs, 1981

7. Golub, G. H. and Van Loan, Ch., Matrix Computations, Third Edition, The Johns Hopkins
University Press, 1996

8. Liu, J. W. H. The role of elimination trees in sparse factorization, SIAM J. Matrix Analysis and
applications, 11,1990, pp. 134-172

9. Gilbert, J. R. and Ng, E. Predicting structure in nonsymmetric sparse matrix factorizations,
in George, A., Gilbert, J.R. and Liu, J. W. H. (editors) “Graph Theory and Sparse Matrix
Computation”, Springer-Verlag, 1993

10. Gilbert, J. R., and Liu, J. W. H. Elimination structures for unsymmetric sparse LU factors,
SIAM J. Matrix Anal. Appl., 14, 1993

11. Grigori, L. and Li, X.S. Performance Analysis of Parallel Right-Looking Sparse LU
Factorization on Two Dimensional Grids of Processors, Para'04 workshop on state-
of-the-art in scientific computing, 2004

12. ***, http://math-atlas.sourceforge.net/

