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Abstract: In this paper we investigate a method to improve the performance of sparse LU 
matrix factorization used to solve unsymmetric linear systems, which appear in many 
mathematical models. We introduced and used the concept of the supernode for unsymmetric 
matrices in order to use dense matrix operations to perform the LU factorization for sparse 
matrices. We describe an algorithm that uses supernodes for unsymmetric matrices and we 
indicate methods to locate these supernodes. Using these ideas we developed a code for 
sparse LU matrix factorisation.  We conducted experiments to evaluate the performance of this 
algorithm using several sparse matrices. We also made comparisons with other available 
software packages for sparse LU factorisation. 
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1. Introduction 
 

The numerical solution for large sparse linear systems lies at the heart of many 
engineering and scientific applications like macroeconometric models, linear programming, 
semiconductor device simulations, computational fluid dynamics. 

The problem of solving sparse symmetric positive definite systems of linear 
equations on sequential processors is fairly well understood. Normally, the solution process 
is performed in two phases: 

• First, the matrix A is factorized, LUA =  where L is a lower triangular matrix with 1s 

on the main diagonal and U is an upper triangular matrix; in the case of symmetric 
positive definite matrices, we have A=LLt. 

• Second, we have to solve two linear systems with triangular matrices: bLy =  

and yUx = . 

While the problem of solving sparse symmetric positive definite systems of linear 
equations is well understood, for unsymmetric systems it is difficult to design high 
performance algorithms because the pivoting needed in LU factorization generates dynamic 
and unpredictable amount of work and intermediate results. 

For positive definite systems, the solution is computed in three phases: 
• Symbolic factorization to determine the nonzero structure of the Cholseky factor; 
• Numeric factorization; 
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• Solution of two triangular systems; 
Elimination trees (Liu, 1990) are the standard way to reduce the time and space for 

symbolic factorization. For numeric factorization there are two high performance solutions: 
the supernodal method and the multifrontal method (Duff, 1983). Supernodal and 
multifrontal methods  allow the use of dense vector operations for nearly all of the floating-
point computation, thus reducing the symbolic overhead in numeric factorization. Overall, 
the Megaflop rates of modern sparse Cholesky codes are nearly comparable to those of 
dense solvers. 

 

2. The generalization of supernodes for unsymmetric LU factorization 
 

For unsymmetric systems, where pivoting is required to maintain numerical stability, 
the performances of the software packages are below the ones for symmetric systems.  

The research has concentrated on two basic approaches for unsymmetric systems: 
submatrix-based methods and column-based methods.  

Submatrix methods typically use some form of Markowitz ordering with threshold 
pivoting, in which each stage's pivot element is chosen from the uneliminated submatrix by 
criteria that attempt to balance numerical quality and preservation of sparsity. 

Column methods typically use ordinary partial pivoting. The pivot is chosen from 
the current column according to numerical considerations alone; the columns may be 
preordered before factorization to preserve sparsity. In column methods, the preordering for 
sparsity is completely separate from the factorization, just as in the symmetric case. This is an 
advantage when several matrices with the same nonzero structure but different numerical 
values must be factored. However, symbolic factorization cannot be separated from numeric 
factorization, because the nonzero structures of the factors depend on the numerical pivoting 
choices. Thus column codes must do some symbolic factorization at each stage. 

In this paper we describe a solution of sparse LU factorization using a left looking 
column method with partial pivoting. 

In our method, preordering for preserving sparsity is completely separate from the 
factorization process, but symbolic factorization cannot be separated from numeric 
factorization because the structure of factors changes dynamically due to the pivoting. In 
order to speedup the numerical factorization we use a generalized version of supernodes for 
unsymmetric matrices.  

The idea of a supernode is to group together columns with the same nonzero 
structure, so they can be treated as a dense matrix for storage and computation. Supernodes 
were originally used for symmetric sparse Cholesky factorization. In the factorization A = LLT 
(or A = LDLT ), a supernode is a range (r:s) of columns of L with the same nonzero structure 
below the diagonal; that is, L(r:s; r:s) is full lower triangular and every row of L(s:n; r:s) is 
either full or zero. 

Using the supernodes improves the LU factorisation because of the following (we 
considered the influence of supernodes on the left-looking LU factorization) ( Gilbert, 1993): 

1. The inner loop  has no indirect addressing and thus sparse Level 1 BLAS is 
replaced by dense Level 1 BLAS; 
2. The outer loop can be unrolled to save memory references and Level 1 BLAS can 
be replaced by level 2 BLAS operations; 
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3. Elements of the source supernode can be reused in multiple columns of the 
destination supernode to reduce cache misses - level 2 BLAS is replaced by Level 3 
BLAS. 
For a symmetric positive definite matrix, a formal definition of a supernode can be 

given in terms of elimination tree (Liu, 1990). A supernode is a maximal set of contiguous 
nodes {j, j+1, … j+w} such that  
 

])[(},...,2,1{])[( wjTAdjwjjjjTAdj GG +∪+++=  

 
In matrix terms, ])[( jTAdjG indicates the nonzero elements in column j of the factor 

L. In other words, a supernode is a maximal block of contiguous columns in the Cholesky 
factor L where these columns have identical nonzero structure below the diagonal and the 
corresponding block diagonal is full triangular. 

It is possible to use a generalization of the supernode concept for the unsymmetric 
matrices. In this case, a supernode is a range (k:t) of columns of L with the  triangular 
diagonal block full and the same structure below the diagonal block. In figure 1 we have 
represented a sparse matrix A and its factors  F = L + U. Using the above definition of 
supernodes, matrix A has 7 supernodes : {1, 2, 3}, {4}, {5}, {6}, {7, 8}, {9}, 10, 11, 12}. 

The effect of supernodes in Cholesky factorization is that all updates from columns 
belonging to a supernode are aggregated into a dense vector before the sparse update of 
the current column. This process of columns update can be implemented using Level 2 BLAS 
matrix-vector multiplications. It is even possible to use supernode-supernode update which 
can be implemented with Level 3 BLAS operations. 
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Figure 1. An example of a sparse matrix and its factors L and U 
 

Supernodes are only useful if they actually occur in practice. The occurrence of 
symmetric supernodes is related to the clique structure of the chordal graph of the Cholesky 
factor, which arises because of fill during the factorization. Unsymmetric supernodes are 
harder to characterize, but they also are related to dense submatrices arising from fill. 

In sparse Cholesky factorization, supernodes can be determined during the initial 
symbolic factorization which is not the case of unsymmetric LU factorization where the 
nonzero structure cannot be determined before numeric factorization. In order to obtain 
larger supernodes we must permute the columns of L to bring toghether columns with the 
same nonzero structure.  



  
Quantitative Methods Inquires 

 
182 

In Cholesky factorization this reordering can de obtained by a postorder traversal of 
the elimination tree. The postorder etree is used to locate the supernodes before numerical 
factorization. The analog for etree in the case of an unsymmetric matrix is the column 
elimination tree (Gilbert, 1993). The column etree of A is the symmetric elimination tree of 
the column intersection graph of A, or equivalently the elimination tree of ATA provided 
there is no cancellation in computing ATA (Gilbert, 1993). The column etree can be 
computed from A in time almost linear in the number of nonzeros of A by a variation of an 
algorithm of Liu (Liu, 1990). 

It can be shown that column elimination tree represents the dependence between 
columns of U and L, and for strong Hall matrices there is no other information obtainable 
from the structure of  the original matrix A (Gilbert, 1993). Before we factor the matrix A we 
determine its column elimination tree and permute its columns according to a postorder on 
the tree. 

In figure 2 we present a description of the algorithm used for unsymmetric LU 
factorization. The advantage of the supernode-column updates consists in using efficient 
Level 2 BLAS operations, while in the simple column algorithm there are only Level 1 BLAS 
operations.  The presence of the pivoting process precludes the separation of symbolic from 
the numeric factorization. Thus, the symbolic factorization for each column is computed just 
before the numeric factorization of that column. The structure of the column j can be 
determined by a traversal of the directed graph G associated with matrix L(:, 1:j-1)t (Gilbert, 
1993). The depth-first traversal of G determine the structure of  U(:, j) and the columns of L 
that updates the column j. At the end of the symbolic factorization of column j we can 
determine very easy if column j is part of the same supernode as column j-1. 
 
for each column j = 1 to n do 
 c = A(:,j); c is the current column 
 Determine the set S of the supernodes from L which 
 updates column j; 
 Verify if column j is part of the same supernode as 
 column j-1; 
 for each supernode in S do 
  c(k:t) = L(k:t, k:t)-1c(k:t); 
  c(k+1:n)=c(k+1,n)- L(k+1:n, k:t) c(k:t);  
 endfor 
 find the index i of the pivot, c(i) = maxi=j:nc(i) 
 swap c(i) and c(j); 
 U(1:j,j)= c(1:j), L(j:n) = c(j:n)/c(j); 
endfor  
Figure 2. The supernodal LU factorization algorithm 
 

3. Experimental results 
 

We have implemented the supernodal LU factorization using the C programing 
language and we have conducted a series of experiments on several sparse matrices. We 
have used a system with an INTEL CORE 2 processor at 1.6 GHz with 1 GB of main memory. 
The experimental matrices are from the Harwell Boeing collection. These matrices are 
presented in table 1 and they are factored using the natural order and using an approximate 
minimum degree ordering algorithm (Davis, 2002).  
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Table 1. Test matrices: n is the number of lines/columns and nnz is  
the number of nonzero elements 

Matrix n nnz(A) nnz(A)/n 
SHERMAN3 5005 20033 4 
SHERMAN5 3312 20793 6.27 

FS7601 760 5976 7.86 
FS7602 760 5976 7.86 
FS7603 760 5976 7.86 
ORSIRR2 886 5970 6.73 

 
In our implementation, we used the ATLAS (Automatically Tuned Linear Algebra 

Software) library as a high performance implementation of the BLAS. 
Table 2 presents the performance of the supernodal LU factorization with natural 

ordering of the matrix A and table 3 presents the case with matrix A reordered with the 
approximate minimum degree algorithm. This results show that the approximate minimum 
degree ordering improves the sparsity of factors as we expected.  The mflops rate of sparse 
supernodal factorization is about 70% of the dense LU factorization. The dense factorization 
performance was measured with the standard ATLAS - BLAS  implementation and LAPACK 
package. 
Table 2. Performance of supernodal LU factorization using natural ordering 

Matrix MFLOPS nnz(L) nnz(U) 
SHERMAN3 212.98 548571 548571 
SHERMAN5 280.06 409095 998665 

FS7601 291.77 201627 207257 
FS7602 291.78 207378 208907 
FS7603 296.08 207378 208024 
ORSIRR2 200.01 66027 79763 

 
Table 3. Performance of supernodal LU factorization  

using the aproximate minimum degree ordering 

Matrix MFLOPS nnz(L) nnz(U) 
SHERMAN3 279.57 184086 184086 
SHERMAN5 251.80 93357 118436 

FS7601 161.9 16535 18206 
FS7602 161.08 17094 19479 
FS7603 157.80 17532 52003 
ORSIRR2 200.01 66027 79763 

 
We compared the performance of the supernodal LU factorization implementation 

with a multifrontal factorization package – UMFPACK 5.2. UMFPACK uses a multifrontal 
algorithm. Where the outer loop of a left-looking algorithm like supernodal LU is over 
columns of the factors being computed, the outer loop of a multifrontal algorithm is over 
pivots being eliminated. All the updates created when a block is eliminated are computed at 
once and stored as a dense update matrix. Before a block of pivots is eliminated, all the 
update matrices contributing to that block are summed into a frontal matrix. The elimination 
step can use Level 2 or Level 3 BLAS because the arithmetic is carried out on the dense 
frontal matrix. Some extra intermediate storage is needed to record update matrices that 
have not yet been assembled into frontal matrices, and some extra data movement is 
needed for the assembly. UMFPACK does not use a column preordering; rather, it chooses 
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row and column pivots to balance considerations of stability and sparsity by using 
approximate Markowitz counts with a pivot threshold. In principle, the pivot threshold can 
lead to a less accurate solution than strict partial pivoting; in practice, the lost accuracy can 
usually be retrieved by iterative refinement of the solution. In principle, the freedom to 
choose both row and column pivots dynamically could lead to sparser factors than strict 
partial pivoting; in practice, some matrices have sparser factors by one method and some by 
the other. 

UMFPACK does not include an initial column ordering step. For the initial column 
ordering in supernodal LU factorization, we ran the aproximate minimum degree algorithm 
(Davis, 1997) on the structure of ATA. We reported times for ordering and factorization 
separately. In applications where many matrices with the same nonzero structure but 
different values are factored, the cost of column ordering can be amortized over all the 
factorizations; in applications where only a single matrix is to be factored, preordering is part 
of the solution cost. 

Table 4 and 5 shows the time needed for LU factorisation using our supernodal 
algorithm and the UMFPACK. Table 6 shows the memory requirements for the two 
approaches. 

 
Table 4. Performance of supernodal LU factorization and UMFPACK using natural ordering 

Matrix Supernodal Factorization (msec) UMFPACK Factorization (msec) 
SHERMAN3 560 710 
SHERMAN5 670 780 

FS7601 48 57 
FS7602 51 55 
FS7603 45 72 
ORSIRR2 54 53 

 
Table5. Performance of supernodal LU factorization and UMFPACK using  

the aproximate minimum degree ordering 

Matrix Supernodal Factorization (msec) UMFPACK Factorization (msec) 
SHERMAN3 832 1002 
SHERMAN5 932 1210 

FS7601 75 89 
FS7602 78 92 
FS7603 70 81 
ORSIRR2 80 93 

 
 
Table 6. Memory requirements for LU factorization using  

the supernodal approach and UMFPACK. 

Matrix Supernodal Factorization (MB) UMFPACK Factorization (MB) 
SHERMAN3 3.67 5.87 
SHERMAN5 3.83 6.01 

FS7601 1.22 2.23 
FS7602 1.25 2.32 
FS7603 1.22 2.24 
ORSIRR2 1.44 2.98 
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It can be observed from this figures that the supernodal approach performs slightly 
better for five from the six matrices used for tests. Although there is not a clear difference 
betwenn two aproaches, the supernodal algorithm can be used with succes for large sparse 
systems.  

The supenodal LU factorization algorithm can be improved further on machines 
with a memory hierarchy by changing the data access pattern. The data we are accessing in 
the inner loop  include the destination column j and all the updating supernodes to the left 
of column j. Column j is accessed many times, while each supernode is used only once. In 
practice, the number of nonzero elements in column j is much less than that in the updating 
supernodes. Therefore, the access pattern given by this loop provides little opportunity to 
reuse cached data. In particular, the same supernode  may be needed to update both 
columns j and j+1. But when we factor the (j+1)st column, we will have to fetch the same 
supernode  again from memory, instead of from cache (unless the supernodes are small 
compared to the cache). To exploit memory locality, we factor several columns (say s of 
them) at a time in the outer loop, so that one updating supernode  can be used to update as 
many of the s columns as possible. 

 

4. Conclusions 
 

In this paper we presented an algorithm for sparse LU factorization using a 
generalization of the supernode concept. The supernode for the unsymmetric matrices is a 
range (k:t) of columns of L with the  triangular diagonal block full and the same structure 
below the diagonal block. We developed an algorithm for matrix factorization using 
supernodes based on the clasical left-looking LU factorization. 

We implemented this algorithm in a software package using the C programming 
language and ATLAS library as a high performance implementation of BLAS. We tested our 
implementation using some sparse matrices from the Harwell-Boeing collection. The results 
of the tests shows that the sparse LU factorization using supernodes can achieve about 70%  
of the performance for the dense LU factorization. 

We also compared the sparse LU factorization using supernodes with a multifrontal 
factorization package –UMFPACK. The results shows that the supernodal approach performs 
slightly better than the multiforntal approach. 
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