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Abstract: This paper aims to modelling the evolution of unemployment rate using the Box-
Jenkins methodology during the period 1998-2007 monthly data. The empirical study relieves
that the most adequate model for the unemployment rate is ARIMA (2,1,2). Using the model,
we forecasts the values of unemployment rate for January and February 2008.Therefore, the
unemployment rate for January 2008 is 4.06%.
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1. Theoretical Background

The pioneers in this area was Box and Jenkins who popularized an approach that
combines the moving average and the autoregressive models in the book'.Although both
autoregressive and moving average approaches were already known (and were originally
investigated by Yule), the contribution of Box and Jenkins was in developing a systematic
methodology for identifying and estimating models that could incorporate both approaches.
This makes Box-Jenkins models a powerful class of models.

The Box-Jenkins ARMA model is a combination of the AR and MA models as
follows:

Vo=, +a Y, +8,Y, 5+, Y, —bU —bou, — =bu U
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Figure1. Box-Jenkins procedure

There are three primary stages in building a Box-Jenkins time series model:
1. Model Identification
2. Model Estimation
3. Model Validation

1.1. Box-Jenkins Model Identification

The identification stage is the most important and also the most difficult: it consists
to determine the adequate model from ARIMA family models. The most general Box-Jenkins
model includes difference operators, autoregressive terms, moving average terms, seasonal
difference operators, seasonal autoregressive terms, and seasonal moving average
terms2.This phase is founded on the study of autocorrelation and partial autocorrelation.

The first step in developing a Box-Jenkins model is to determine if the series is
stationary and if there is any significant seasonality that needs to be modelled.

Stationarity in Box-Jenkins Models
The Box-Jenkins model assumes that the time series is stationary. A stationary series
has:
1. Constant mean
2. Constant variance
3. Constant autocorrelation structure
Regression with nonstationary variables is a spurious correlation. The random walk

Yi = Y U U,

t. Stationarity can be assessed from a run sequence plot. The run sequence plot should show

2
~ N (0,9 ) is not stationary, since its variance increases linearly with time

constant location and scale. It can also be detected from an autocorrelation plot. Specifically,
non-stationarity is often indicated by an autocorrelation plot with very slow decay.
Box and Jenkins recommend differencing non-stationary series one or more times

to achieve stationarity. Doing so produces an ARIMA model, with the standing for
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"Integrated". But its first difference AYy =Y = Vi = Uy is stationary, so y is ,integrated of

order 1", ory ~ I (1).

Testing for non-stationarity

1. Autocorrelation function (Box-Jenkins approach)-if autocorrelations start high
and decline slowly, then series is nonstationary, and should be differenced.

2. Dickey-Fuller test

ye=a+ byt—l +U, would be a nonstationary random walk if b = 1. So to find out

Ay, =a+cy,, +U

if y has a “unit root” we regress: t where ¢ = b-1 and test hypothesis that

¢ = 0 against ¢ < 0 (like a “t-test”).

Seasonality in Box-Jenkins Models

Box-Jenkins models can be extended to include seasonal autoregressive and
seasonal moving average terms.

Model identification: seasonality of order s is revealed by "spikes” at s, 2s, 3s, lags
of the autocorrelation function.

Model estimation: to make series stationary, may need to take s-th differences of
the raw data before estimation. These seasonal effects may themselves follow AR and MA
processes.

At the model identification stage, our goal is to detect seasonality, if it exists, and to
identify the order for the seasonal autoregressive and seasonal moving average terms. For
Box-Jenkins models, it isn’t necessary remove seasonality before fitting the model. Instead, it
can include the order of the seasonal terms in the model specification to the ARIMA
estimation software.

Once stationarity and seasonality have been addressed, the next step is to identify
the order (the p and q) of the autoregressive and moving average terms. The primary tools
for doing this are the autocorrelation plot and the partial autocorrelation plot. The sample
autocorrelation plot and the sample partial autocorrelation plot are compared to the
theoretical behaviour of these plots when the order is known.

Order of Autoregressive Process (p)

Specifically, for an AR (1) process, the sample autocorrelation function should have
an exponentially decreasing appearance. However, higher-order AR processes are often a
mixture of exponentially decreasing and damped sinusoidal components. For higher-order
autoregressive processes, the sample autocorrelation needs to be supplemented with a
partial autocorrelation plot. The partial autocorrelation of an AR (p) process becomes zero at
lag p+1 and greater, so we examine the sample partial autocorrelation function to see if
there is evidence of a departure from zero. This is usually determined by placing a 95%
confidence interval on the sample partial autocorrelation plot (most software programs that
generate sample autocorrelation plots will also plot this confidence interval). If the software

program does not generate the confidence band, it is approximately=2/~+/ N, with N

denoting the sample size.
The data is AR (p) if: ACF will decline steadily, or follow a damped cycle and PACF
will cut off suddenly after p lags.
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Order of Moving Average Process (q)

The autocorrelation function of a MA (q) process becomes zero at lag gq+1 and
greater, so we examine the sample autocorrelation function to see where it essentially
becomes zero.

The following table summarizes how we use the sample autocorrelation function for
model identification.

Table 1. The type of the model

Shape Indicated Model
Exponential, decaying to zero Autoregressive model. Use the partial autocorrelation plot to
identify the order of the autoregressive model.

Alternating positive and negative, Autoregressive model. Use the partial autocorrelation plot to

decaying to zero help identify the order.

One or more spikes, rest are Moving average model, order identified by where plot
essentially zero becomes zero.

Decay, starting after a few lags Mixed autoregressive and moving average model.

All zero or close to zero Data is essentially random.

High values at fixed intervals Include seasonal autoregressive term.

No decay to zero Series is not stationary.

The data is MA (q) if: ACF will cut off suddenly after q lags and PACF will decline
steadily, or follow a damped cycle.

It's not indicated to build models with:

— Large numbers of MA terms

— Large numbers of AR and MA terms together

You may well see very (suspiciously) high t-statistics. This happens because of high
correlation (“colinearity”) among regressors, not because the model is good.

1.2. Box-Jenkins Model Estimation

The main approaches to fitting Box-Jenkins models are non-linear least squares
and maximum likelihood estimation. Maximum likelihood estimation is generally the
preferred technique®.

1.3. Box-Jenkins Model Diagnostics

Model diagnostics for Box-Jenkins models is similar to model validation for non-
linear least squares fitting. Model diagnostics for Box-Jenkins models is similar to model
validation for non-linear least squares fitting.

That is, the error term U, is assumed to follow the assumptions for a stationary

unvaried process. The residuals should be white noise (or independent when their
distributions are normal) drawings from a fixed distribution with a constant mean and
variance.

If the Box-Jenkins model is a good model for the data, the residuals should satisfy
these assumptions. If these assumptions are not satisfied, we need to fit a more appropriate
model. That is, we go back to the model identification step and try to develop a better
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model. Hopefully the analysis of the residuals can provide some clues as to a more
appropriate model. The residual analysis is based on:

Q(s)=np r(k)* = z*(s)

(k) is the k-th residual autocorrelation and summation is over first s autocorrelations.

1. Random residuals: the Box-Pierce Q-statistic: where r

2. Fit versus parsimony: the Schwartz Bayesian Criterion (SBC):
SBC = In {RSS/n} + (p+d+q) In (n)/n, where RSS = residual sum of squares, n is
sample size, and (p+d+q) the number of parameters.

2. The data

The variable used in the analysis is the unemployment rate that ran from 1998 to
the end of 2007 and its available monthly. The source of data is the Monthly Bulletins of
National Bank of Romania.

Stage 1: The time series analysis
14
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Figure 2. The unemployment rpate evolution during the period 1998-2007

Source: Montly Bulletins of National Bank of Romania
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The data presents some seasonal fluctuations and that is the reason for with data
has been seasonally adjusted, using the moving average method implemented in Eviews
program.

144
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Figure 3. The unemployment rate and the unemployment rate seasonally adjusted

The first step in developing a Box-Jenkins model is to determine if the series is
stationary. For this, we use the autocorrelation function (ACF) and Augmented Dickey-Fuller
test (ADF).

Because the autocorrelation (ACF) start high and decline slowly, then series is
nonstationary, and should be differenced. We have analyzed the data series stationarity by
using the Augmented Dickey-Fuller (ADF) test, who reveals the fact that the zero hypotheses
is accepted, the series has a root unit and it is non stationary. It becomes stationary by first

order differences.
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Date: 03118/08 Time: 00:29 Mull Hypothesis: RSSA98 has a unit root

SETT sl A Exogenous: Canstant, Linear Trend

Included ahserations: 120 Lag Length: 0 (Fixed)

Autocorrelation Partial Correlation A PAC  (-Stat Prob t-Statistic Froh *

! IF 1 0977 0577 117.54 0.000 .

| o 2 0949 -0162 229.20 0.000 Augmented Dickey-Fuller test statistic -3.037670  0.1266
I I 3 0.915 -0.097 334.06 0.000 Test critical values: 1% level -4.0365953

! (N 4 0.884 0.052 43273 0.000 5% level -3.448021

! o 5 0853 -0020 52533 0.000 10% level -3.149135

! N 6 0.822 -0.037 612.07 0.000

! N 7 0752 0044 69343 0.000 *Mackinnan (1995) one-sided p-values.

! o g 0.764 -0.013 769.71 0.000

! (N 9 0738 0.017 841.45 0.000

: : : 1? gg;; ggg gggg; gggg Augmented Dickey-Fuller Test Eguation

\ O 12 OEG4 009 10916 000 Dependent Variable: DIRSSADE)

| 3 13 045 0076 10887 0.000 Wethod: Least Squares

. TN 14 DE26 0041 11429 0000 EES e ) Ul

| BN 15 0608 -0.014 1194.4 0.000 Sarnple (adjusted); 1998M02 2007M12

I g 16 0555 -0.042 12431 0.000 Included observations: 119 after adjustments

! e 17 048687 0.015 1288.8 0.000

! AN 18 0.545 0.035 13315 0.000 Yariable Coefficient  Std. Eror  +-Statistic  Prob.
! (N 19 0.523 0.010 1371.2 0.000

! ]I 20 0502 -0.005 1408.0 0.000 RSSAIE(-1) 0085244 0028062 -3.037670  0.0028
! N 21 0.472 0044 14420 0000 & 1086913 033613 3144520 0.0021
: :l : gg gjgg gggi ]ggéi’ gggg @TREND(1998M01) -0.006726 0001941 3454857  0.0007
' s 21 D402 DOA7 15247 0000 Resquared 0.093805  Mean dependent var 0037015
! (NN 25 0380 0.035 154B.9 0.000 ;

. e 96 0358 0037 15668 0.000 Adjusted R-soquared  0.078182 3.0, dependent var 0.354721
' ol 97 0396 007 150846 0.000 5.E. of regression 0.340572  Akaike infa criterion 0708507
| K 78 0.314 -0.017 1600.3 0.000 Sum souared resid 13.45477  Schwarz critetion 0778565
I N 29 0293 0020 16141 0.000 Log likelihood -39.18619  F-statistic £.003934
| e 30 0271 003 16261 0.000 Durbin-YWatson stat 1.312423  ProbiF-statistic) 0.003302
! B 31 0.247 -0.043 1636.1 0.000

Figure 4. The correlogram of unemployment Figure 5. The Augmented Dickey-Fuller test
rate seasonally adjusted results

Stage 2: The identification - the autocorrelation is computed on

the first differences series

Sample: 1998001 200712
Included observations: 119

Autocorrelation Partial Carrelation AL PACZ Q-Stat Prab

1 0351 0351 15016 0.000
2 0193 0.080 19610 0.000
3 -0.150 -0.276 22.411 0.000
4 -0.040 0.094 22612 0.000
50043 0027 22844 0.000
6 -0.086 -0.172 23797 0.001
70047 0.049 24033 0.001
g -0.085 -0.015 24637 0.002
9 0003 -0.021 24645 0.003
10 -0.042 -0.036 24553 0.008
11 0025 -0.018 24964 0.002
12 0148 -0.155 27904 0.008
13 0001 0118 27.904 0.002
14 0011 D025 27920 0015
15 0026 -0.112 25.014 0.0
16 0015 0.072 28.047 0.031
17 0002 0025 23.059 0.044
18 -0.008 -0.118 28.068 0.061
19 0002 0.058 23.080 0.032
20 D082 0120 28763 0.093
21 0131 0.040 31.266 0.0639
22 0017 -0.119 31,311 0.020
23 -0.089 -0.064 32507 0.090
24 0054 0070 32943 0105
25 -0.017 0006 32930 013
26 0038 0002 33208 0156
27 -0.036 -0.054 33.410 0184
25 -0.016 0.024 33.450 0220
29 0054 -0.033 33914 0242
30 0042 0038 34197 0273
31 0051 0.048 34620 0299
32 0052 0084 35728 0297

Figure 6. The Correlogram of first differences of unemployment rate
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By applying the ADF test for the series of the first order differences one can observe
that the series becomes stationary, so the initial series of the monthly unemployment rate is
integrated by first order.

As a result, we have applied the Box- Jenkins procedure on the stationary data
series and we want to identify the corresponding ARIMA (p, q) process. The series
corelogram has allowed us to choose appropriate p and q for the data series. We have
estimated more models in order to determine the right specification, by choosing from both
the different models estimated on the informational criteria Akaike and by generating
predictions on the basis of estimated models. The series corelogram suggests the necessity of
introduction in the process estimation of both the analyzed variable lags and the lags of the
error. We have started with an AR (1) process and further analyzed the residual corelogram
in order to catch the correlations and autocorrelations from lags bigger that 1. From Akaike
criteria’s point of view, the proper model to best adjust the data is ARIMA (2, 1,2).

Stage 3: The Estimation

Dependent Yariable: DIRSSAID)

Method: Least Sguares

Date: 03/27/08 Time: 15:16

Sample (adjusted): 1998004 2007 M12
Included abszervations: 117 after adjustments
Convergence achieved after 21 iterations
Backcast: 1298M02 1995003

“ariable Coefiicient  Std. Error  t-Statistic Prob.
AR 0443316 0077808 5697588 0.0000
AR(Z) NA15496 0072797 7081316 0.0000
A1) 0813233 0009935  81.44546 0.0000
hAZ) 0977082 0013197 74.0384 0.0000
R-zquared 0.281409  Mean dependent var  -0.039311

Adjusted R-squared 0262331 S5.D. dependent var 0.357265
S.E. of regression 0.306846  Akaike info criterion 0.505651

Sum squared resid 10639458  Schwarz criterion 0.605054
Log likelihood -25.75609  Durbin-WYatson stat 1.848075
Inverted AR Roots - 22+ B8 -.22- BB
Inverted kA Roots - 41+.90i -.41- 580

Figure 7. The ARIMA model estimation

Stage 4: The Model’s Adaptation
The coefficients of the model are significantly different of O (the t-test). The others
statistics (DW, F-stat) let portend a good fitting. The determination coefficient R-squared is
28.14%.
The residual analysis is based on two criterions:
e The normality test point out that the average of residuals is approximately 0.
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Seties: Residuals
30 Sample 1993004 2007 w1 2
Obszervationz 117

Mean 003182
Median -0.0555M
faimum 2363541
Minitnum -0.641280
Std. Dev. 03012249
Skewness 4. 252528
Hurtosiz 3544953

Jarque-Bera 5490570
Prokiability 0.000a00

I
-0.5 -0.0 05 1.0 1.5 2.0

e The residual is a white noise, analysing the autocorrelation. Any term isn’t
exterior to the confidence intervals and the Q-statistic has a critical
probability near to 1. The residue it may be assimilate to a white noise
process.

Date: 0372708 Tirme: 1552

Sarnple: 1998004 2007 w12

Included observations: 117

Q-statistic probabilities adjusted for 4 ARMA term(s)

Autocorrelation Partial Caorrelation AC PAC C-Stat Prob

1 ] 1 0072 0072 06252

2 0002 0007 06297

3 0026 0026 0.7097

4 0010 0006 0.7214

5 0017 0016 07555 0.385
6 -0.002 -0.005 07555 0685
70005 0005 07593 0.859
§ 0.002 0002 07599 0544
8 0.7 0018 07974 0577
10 0.013 -0.015 08384 0.89N
11 -0.014 -0.012 0.8655 0897
12 0.083 0087 1.7869 0557
13 0.001 -0.011 1.7870 0594
14 0024 -0.021 1.8626 0597
15 0.014 -0.015 1.6856 0599
16 0.013 -0.012 1.9128 1.000
17 0.023 -0.024 1.9875 1.000
18 -0.021 -0.017 20453 1.000
19 -0.023 -0.018 21214 1.000
20 0022 0019 215935 1.000
21 0011 -0.004 22113 1.000
22 0027 0022 23163 1.000
23 0.020 -0.013 235749 1.000

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I 24 0015 -0.020 24072 1.000

Figure 8. The Correlogram of Residuals Squared
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Therefore, the estimation of ARIMA (2,1,2) model is validated, the time series can
be described by an ARIMA(2,1,2) process. The unemployment rate seasonally adjusted
times series and in first differences (DRSSA) is described by the process:

DRSSA = —0.4433-RSSA,_, —0.5154-RSSA_, +0.8132-u,, +0.9777-u,_,

Stage 5: The forecasting
The forecasting is computed by reaggregation of different components. The residual

values for the months of December and November are: U,,,,, =—0.21465,

Uygrs = —0.15538.

The fitting values of ARIMA model for unemployment rate are:

RSSA, 1, = —0.06526, RSSA,,,, =0.15115.

Table 2. The unemployment rate forecasts

u, DRSSA RSSA Seasonal Unemployment
Coefficients rate(%)
November 2007 -0,21465
December 2007 -0,15538 4,08929
January 2008 -0,37544 3,71384 1.0948 4,06
February 2008 -0,0098 4,15817 1.1226 4,15
March 2008 0,197846 4,10594 1.1048 4,35
20
Forecast: RESASEF
16 Actual: RE5A93
i Forecast sample: 199301 200712
Adjusted sample: 1998004 2007012
124 7 Included obsermations: 117
B—‘ Root Mean Sguared Error 2. 4390666
- Mean Absolute Error 21659208
Mean Abs. Parcent Errar 33.06655
44 Theil Ineguality Coefficient 0146216
e Bias Proportion 0.053319
04 “ariance Proportion 0.943083
- Covariance Proportion 0.003593
) :

LN NI LN B BRI B B BRI B
93 93 00 o1 02 03 04 05 05 OF

— RESZAHGF

Using an ARIMA (2,1,2) model of monthly values series of unemployment rate we
can predict the value of unemployment rate for January and February 2008. In January
2008 the unemployment rate forecasted by the model was 4, 06% and for February 4,15%.
The result troves sustainability into the monthly bulletin of National Institute of Statistics.
According to this publication the unemployment rate is 4.3% for January 2008.
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