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Abstract: This paper aims to modelling the evolution of unemployment rate using the Box-
Jenkins methodology during the period 1998-2007 monthly data. The empirical study relieves 
that the most adequate model for the unemployment rate is ARIMA (2,1,2). Using the model, 
we forecasts the values of unemployment rate for January and February 2008.Therefore, the 
unemployment rate for January 2008 is 4.06%. 
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1. Theoretical Background 
 

The pioneers in this area was Box and Jenkins who popularized an approach that 
combines the moving average and the autoregressive models in the book1.Although both 
autoregressive and moving average approaches were already known (and were originally 
investigated by Yule), the contribution of Box and Jenkins was in developing a systematic 
methodology for identifying and estimating models that could incorporate both approaches. 
This makes Box-Jenkins models a powerful class of models.  

The Box-Jenkins ARMA model is a combination of the AR and MA models as 
follows: 

tqtqttptpttt uubububyayayaay +−−−−+++= −−−−−− ............ 221122110  
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Figure1. Box-Jenkins procedure 
 

There are three primary stages in building a Box-Jenkins time series model: 
1. Model Identification  
2. Model Estimation  
3. Model Validation 

 

 
1.1. Box-Jenkins Model Identification 

The identification stage is the most important and also the most difficult: it consists 
to determine the adequate model from ARIMA family models. The most general Box-Jenkins 
model includes difference operators, autoregressive terms, moving average terms, seasonal 
difference operators, seasonal autoregressive terms, and seasonal moving average 
terms2.This phase is founded on the study of autocorrelation and partial autocorrelation.   

The first step in developing a Box-Jenkins model is to determine if the series is 
stationary and if there is any significant seasonality that needs to be modelled.  
 
Stationarity in Box-Jenkins Models 

The Box-Jenkins model assumes that the time series is stationary. A stationary series 
has: 
1. Constant mean 
2. Constant variance 
3. Constant autocorrelation structure 

Regression with nonstationary variables is a spurious correlation. The random walk 

ttt uyy += −1  tu ~ N (0,
2σ ) is not stationary, since its variance increases linearly with time 

t. Stationarity can be assessed from a run sequence plot. The run sequence plot should show 
constant location and scale. It can also be detected from an autocorrelation plot. Specifically, 
non-stationarity is often indicated by an autocorrelation plot with very slow decay. 

Box and Jenkins recommend differencing non-stationary series one or more times 
to achieve stationarity. Doing so produces an ARIMA model, with the "I" standing for 
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"Integrated". But its first difference tttt uyyy =−=Δ −1 is stationary, so y is „integrated of 
order 1”, or y ~ I (1). 
 
Testing for non-stationarity 

1. Autocorrelation function (Box-Jenkins approach)-if autocorrelations start high 
and decline slowly, then series is nonstationary, and should be differenced. 

2. Dickey-Fuller test 

  ttt ubyay ++= −1  would be a nonstationary random walk if b = 1. So to find out 

if y has a “unit root” we regress: ttt ucyay ++=Δ −1  where c = b-1 and test hypothesis that 
c = 0 against c < 0 (like a “t-test”). 
 
Seasonality in Box-Jenkins Models 

Box-Jenkins models can be extended to include seasonal autoregressive and 
seasonal moving average terms.  

Model identification: seasonality of order s is revealed by "spikes” at s, 2s, 3s, lags 
of the autocorrelation function. 

Model estimation: to make series stationary, may need to take s-th differences of 
the raw data before estimation. These seasonal effects may themselves follow AR and MA 
processes. 

At the model identification stage, our goal is to detect seasonality, if it exists, and to 
identify the order for the seasonal autoregressive and seasonal moving average terms. For 
Box-Jenkins models, it isn’t necessary remove seasonality before fitting the model. Instead, it 
can include the order of the seasonal terms in the model specification to the ARIMA 
estimation software.  

Once stationarity and seasonality have been addressed, the next step is to identify 
the order (the p and q) of the autoregressive and moving average terms. The primary tools 
for doing this are the autocorrelation plot and the partial autocorrelation plot. The sample 
autocorrelation plot and the sample partial autocorrelation plot are compared to the 
theoretical behaviour of these plots when the order is known.  
 
Order of Autoregressive Process (p) 

Specifically, for an AR (1) process, the sample autocorrelation function should have 
an exponentially decreasing appearance. However, higher-order AR processes are often a 
mixture of exponentially decreasing and damped sinusoidal components. For higher-order 
autoregressive processes, the sample autocorrelation needs to be supplemented with a 
partial autocorrelation plot. The partial autocorrelation of an AR (p) process becomes zero at 
lag p+1 and greater, so we examine the sample partial autocorrelation function to see if 
there is evidence of a departure from zero. This is usually determined by placing a 95% 
confidence interval on the sample partial autocorrelation plot (most software programs that 
generate sample autocorrelation plots will also plot this confidence interval). If the software 

program does not generate the confidence band, it is approximately N/2± , with N 

denoting the sample size.  
The data is AR (p) if:  ACF will decline steadily, or follow a damped cycle and PACF 

will cut off suddenly after p lags. 
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Order of Moving Average Process (q) 

The autocorrelation function of a MA (q) process becomes zero at lag q+1 and 
greater, so we examine the sample autocorrelation function to see where it essentially 
becomes zero. 

The following table summarizes how we use the sample autocorrelation function for 
model identification. 
 
Table 1. The type of the model 

Shape  Indicated Model  
Exponential, decaying to zero  Autoregressive model. Use the partial autocorrelation plot to 

identify the order of the autoregressive model.  

Alternating positive and negative, 
decaying to zero  

Autoregressive model. Use the partial autocorrelation plot to 
help identify the order.  

One or more spikes, rest are 
essentially zero  

Moving average model, order identified by where plot 
becomes zero.  

Decay, starting after a few lags  Mixed autoregressive and moving average model.  
All zero or close to zero  Data is essentially random.  

High values at fixed intervals  Include seasonal autoregressive term.  

No decay to zero  Series is not stationary.  

 
The data is MA (q) if: ACF will cut off suddenly after q lags and PACF will decline 

steadily, or follow a damped cycle. 
It’s not indicated to build models with: 
– Large numbers of MA terms 
– Large numbers of AR and MA terms together 
You may well see very (suspiciously) high t-statistics. This happens because of high 

correlation (“colinearity”) among regressors, not because the model is good. 
 

1.2. Box-Jenkins Model Estimation 
The main approaches to fitting Box-Jenkins models are non-linear least squares 

and maximum likelihood estimation. Maximum likelihood estimation is generally the 
preferred technique3. 
 

1.3. Box-Jenkins Model Diagnostics 
Model diagnostics for Box-Jenkins models is similar to model validation for non-

linear least squares fitting. Model diagnostics for Box-Jenkins models is similar to model 
validation for non-linear least squares fitting.  

That is, the error term tu  is assumed to follow the assumptions for a stationary 

unvaried process. The residuals should be white noise (or independent when their 
distributions are normal) drawings from a fixed distribution with a constant mean and 
variance.  

If the Box-Jenkins model is a good model for the data, the residuals should satisfy 
these assumptions. If these assumptions are not satisfied, we need to fit a more appropriate 
model. That is, we go back to the model identification step and try to develop a better 
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model. Hopefully the analysis of the residuals can provide some clues as to a more 
appropriate model. The residual analysis is based on: 

1. Random residuals: the Box-Pierce Q-statistic: 
)()()( 22 skrnsQ χ≈= ∑ where r 

(k) is the k-th residual autocorrelation and summation is over first s autocorrelations. 
2. Fit versus parsimony: the Schwartz Bayesian Criterion (SBC): 
SBC = ln {RSS/n} + (p+d+q) ln (n)/n, where RSS = residual sum of squares, n is 

sample size, and (p+d+q) the number of parameters. 
 

 
2. The data 
 

The variable used in the analysis is the unemployment rate that ran from 1998 to 
the end of 2007 and its available monthly. The source of data is the Monthly Bulletins of 
National Bank of Romania. 
 
Stage 1: The time series analysis 

 
Figure 2. The unemployment rpate evolution during the period 1998-2007 
Source: Montly Bulletins of National Bank of Romania 
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The data presents some seasonal fluctuations and that is the reason for with data 
has been seasonally adjusted, using the moving average method implemented in Eviews 
program. 

 
Figure 3. The unemployment rate and the unemployment rate seasonally adjusted 
 

 
 
The first step in developing a Box-Jenkins model is to determine if the series is 

stationary. For this, we use the autocorrelation function (ACF) and Augmented Dickey-Fuller 
test (ADF). 

 
Because the autocorrelation (ACF) start high and decline slowly, then series is 

nonstationary, and should be differenced. We have analyzed the data series stationarity by 
using the Augmented Dickey-Fuller (ADF) test, who reveals the fact that the zero hypotheses 
is accepted, the series has a root unit and it is non stationary. It becomes stationary by first 
order differences.  
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Figure 4. The correlogram of unemployment 

rate seasonally adjusted 
 

Figure 5. The Augmented Dickey-Fuller test 
results 

 

 
Stage 2: The identification - the autocorrelation is computed on  

the first differences series 

 
Figure 6. The Correlogram of first differences of unemployment rate 
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By applying the ADF test for the series of the first order differences one can observe 
that the series becomes stationary, so the initial series of the monthly unemployment rate is 
integrated by first order.  

As a result, we have applied the Box- Jenkins procedure on the stationary data 
series and we want to identify the corresponding ARIMA (p, q) process. The series 
corelogram has allowed us to choose appropriate p and q for the data series. We have 
estimated more models in order to determine the right specification, by choosing from both 
the different models estimated on the informational criteria Akaike and by generating 
predictions on the basis of estimated models. The series corelogram suggests the necessity of 
introduction in the process estimation of both the analyzed variable lags and the lags of the 
error. We have started with an AR (1) process and further analyzed the residual corelogram 
in order to catch the correlations and autocorrelations from lags bigger that 1. From Akaike 
criteria’s point of view, the proper model to best adjust the data is ARIMA (2, 1,2).  
 
Stage 3: The Estimation 

 

 
Figure 7. The ARIMA model estimation 
 
Stage 4: The Model’s Adaptation 

The coefficients of the model are significantly different of 0 (the t-test). The others 
statistics (DW, F-stat) let portend a good fitting. The determination coefficient R-squared is 
28.14%.  
The residual analysis is based on two criterions: 

• The normality test point out that the average of residuals is approximately 0. 
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•   The residual is a white noise, analysing the autocorrelation. Any term isn’t 
exterior to the confidence intervals and the Q-statistic has a critical 
probability near to 1. The residue it may be assimilate to a white noise 
process. 

 
 

 
Figure 8. The Correlogram of Residuals Squared 
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Therefore, the estimation of ARIMA (2,1,2) model is validated, the time series can 
be    described by an ARIMA(2,1,2) process. The unemployment rate seasonally adjusted 
times series and in first differences (DRSSA) is described by the process: 

 

2121 9777.08132.05154.04433.0 −−−− ⋅+⋅+⋅−⋅−= tttt uuRSSARSSADRSSA  

 
Stage 5: The forecasting 

The forecasting is computed by reaggregation of different components. The residual 

values for the months of December and November are: 21465.012:2007 −=u , 

15538.011:2007 −=u . 

The fitting values of ARIMA model for unemployment rate are: 

    15115.0ˆ,06526.0ˆ
11:200712:2007 =−= ARSSARSS . 

 
Table 2. The unemployment rate forecasts 

 
tu  DRSSA RSSA Seasonal 

Coefficients 
Unemployment 

rate(%) 

November 2007 -0,21465     
December 2007 -0,15538  4,08929   

January 2008  -0,37544 3,71384 1.0948 4,06 

February 2008  -0,0098 4,15817 1.1226 4,15 
March 2008  0,197846 4,10594 1.1048 4,35 

 

 
 
Using an ARIMA (2,1,2) model of monthly values series of unemployment rate we 

can predict the value of unemployment rate for January and February 2008. In January 
2008 the unemployment rate forecasted by the model was 4, 06% and for February 4,15%. 
The result troves sustainability into the monthly bulletin of National Institute of Statistics.  
According to this publication the unemployment rate is 4.3% for January 2008. 
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