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Abstract: In this paper we study some properties of the density function 

( ) ( ) ( ) 0,x,1;x 1xx >∈−+⋅= +−− θθθ θ Reef  which may be obtained from the distribution of 

the last order statistic from a reduced logistic population ( ) ( ) R,e1/1F ∈+= − xx x . Its 

truncated variant is also discussed. The point and interval estimations for θ  are provided also. 

The so-called ( )γ,P  - type statistical tolerances are constructed and a comment on the hazard 

rate is done also. The last paragraph is devoted to testing procedures on the parameter 
involved. 
 
Key words: logistic distribution; Burr-Hatke family; last order statistic; truncation; MLE; (P, γ) - 
type tolerances 
 

1. Introduction 
 

As it is well-known, the Belgian scientist Pierre François VERHULST (1804 - 1849) 
proposed in 1838 a “demographic growth cure” which was called later as the logistic 
function: 

bXabXa eB
AYor

10B
AY ++ +

=
+

=  (1) 

where ,Rb,a,0b,a,0x ∈>≥  e being the Euler’s number ( )71828,2e ≈ . The usual 

form used now in econometric studies is the following : 
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0x,0C,B,a,
eB

AY CX ≥>
+

= −  (2) 

(for historical details, see Iosifescu et al, 1985 [8, pages 280 - 281]1). 

Verhulst’s function is obtained from a differential equation of the type ( )yuy =′ , 

where ( )xyy = , ( ) ,R,uy 000 ∈= xx  by taking ( ) .yyyu 2−=  

Therefore, we have: 

( ) ( ) 1
d

y1y
dyory1y

d
dy x
x

=
−

−=  (3) 

which provides the reduced form of the logistic function: 

R,
e1
1y ∈
+

= − xx  (4) 

If we consider y(x) as a cumulative distribution function (cdf) of a given random 

variable ( ) { }xx ≤== XobPrFy:X , the differential equation: 

( ) ( ) ( ) R,FF,gF1F
d
dF

000 ∈=−= xxx
x

 (5) 

where g(x) is an arbitrary positive function ( )R∈x , provides - for several choices of g(x) - 

various cdf(s). 
The form (4) generates the well-known BURR-HATKE family of distributions - see 

Burr (1942 [2]) and Hatke, (1949 [6]). Johnson, Kotz and Balkrishan (1994 [14, page 54]) 
enlists twelve such cdf(s), denoted from I to XII, the second one being just the Verhulst 

distribution function (4) if one takes ( ) 1g ≡x . Notice that the most used cdf from these 

twelve cdf(s) is XII-th one: ( ) 0k,c,0,11 kc >≥+−
− xx  (see Rodriguez, 1977 [16] or 

Vodă, 1982 [18]). 
In this paper, we shall investigate mainly, the density function of the last order 

statistics from the logistic form (4). 
 

2. Preliminaries 
 

If X is a continuous random variable with ( )xXF  as a cdf and if 

( ) ( ) ( ) ( ) ( )n1nk21 XXXXX ≤≤≤≤≤≤ + ……  is an ordered sample on X, then, the distribution 

of the last order statistics X(n) is given as: 

( )
( ) ( ){ } { } ( )xxPrxPr n

XknX FXallobXobxF
n

=≤=≤=  (6) 

(see David, 1970, [3 page 38]). 

In our case, if ( ) ( ) ( )x1/1xx −+== eFFX , then 

( )
( ) ( ) { }0\,1/1x x NnRxeF n

X n
∈∈+= − . It is more interesting to change n by θ  - a 

positive real parameter and then we obtain the cdf: 

( )
( ) 0,R,

e1
1;F:X

x
>θ∈

+
=θ θ−

xx  (7) 
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In a reliability frame we prefer to have [ )+∞∈ ,0x  and hence it is worth to truncate the 

density of X namely: 

( ) ( ) ( ) 0,R,e1e;f:X 1θ
>θ∈+θ=θ

+−−− xx xx  (8) 

as follows: 

( ) ( ) ( ) 0,0,;f
;F1

1,;f T
T

TT >θ≥≥θ⋅
θ−

=θ xxx
x

xx  (9) 

or 

( ) ( )
( ) ( ) ( ) 0θ,0,e1e

1e1
e1,;f T

1θ
θ

θ

TT
T

T

>≥≥+⋅θ⋅
−+

+
=θ

+−−

−

−

xxxx x-x
x

x

 (10) 

If the truncation point is xT = 0, then: 

( ) ( ) ( ) 0,0,e1e
2/11

1,;f 1θ

θTT >θ≥+⋅θ⋅
−

=θ
+−− xxx x-x  (11) 

 

3. Estimation problems 
 

First, let us notice that even for the reduced form (4) the method of moments is 
difficult to be applied. If we consider the form (11) consider the integral: 

( ) ( )∫=
x

x
0

T
k

k dttftm  (12) 

which provides the equation (the derivative of (12)): 

( ) ( )xxx T
k

k fm =′  (13) 

and the k - th moment is given as: 

( ) ( ) xxx dfXE T
0

kk ∫
∞

=  (14) 

It is easy to see now that ( ) ( ) ( )0mmXE 11 −∞=  with m1(0) = 0 and the problems 

lies in the approximation of ( )∞1m . 

The MLE - maximum likelihood estimation - method gives straightforward results in 
the case of (7). We have the likelihood function 

( ) ( )
( )1n

1

n

1
i

n
n21

ie1expθθ;,,L
+θ−

−∏∑ +⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−⋅= xxxxx …  (15) 

where n21 ,, xxx …  is a random sample on X. After some simple algebra, we obtain the MLE 

for θ/1  as: 

( )∑ −+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ n

1

ie1ln
n
1

θ
1̂ x  (16) 

The case of the truncated variable (11) provides successively: 

( ) ( ) ( )
( )1n

1

n

1
i

n
n

n

n21
ie1expθ

12
2θ;,,L

+θ−
−

θ

θ

∏∑ +⋅⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−⋅⋅

−
= xxxxx …  (17) 
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( ) ( ) ( )iennnθL
nn

i
x

11

1ln1xln12ln2lnln −++−−+−−= ∑∑ θθθ  (18) 

 

( )ie1lnn
12
2ln2n2lnnLln n

1

x−
θ +−

θ
+

−
⋅

−=
θ∂

∂ ∑  (19) 

 

( ) 0e1ln
12
2lnnnLln

i

n

1
=+−

−
−

θ
=

θ∂
∂ −

θ ∑ x  (20) 

 
The likelihood equation (20) is of the following type: 

 

( ) 0C
12

B
u
Au u =−

−
−=ϕ  (21) 

 
where A, B, C > 0 and it is clear that it has a solution science 

( ) ( ) Cuandu limlim
u0u

−=ϕ+∞=ϕ
+∞→→ +

. 

Numerical methods are needed to approximate (u). 
 
We shall state now the following. 

 
Proposition. If X is a logistic random variable with cdf given by (7), then the 

variable ( )xe1lnY −+=  is exponentially distributed and the consequences are: 

(i) the MLE for θ/1  is unbiased and with minimum variance; 

(ii) the distribution of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

θ
1̂

 is a Gamma one; 

(iii)  the statistic θθ= ˆ/n2U  has a Chi - square ( )2χ  distribution with 2n degrees 

of freedom. 
 

Proof. We have immediately: 
 

( ) ( ){ } ( ){ }

( )
( )
∫
−

∞−

−−

−

+θ−=

=−<−=≤+=
1eln

zx

z

de1e1

1elnxobPr1ze1lnobPrzF

xxx
 (22) 

 
Taking into account that 

( )
( )

( )

( ) ( )[ ] ( ) ( )[ ]zazazbzbd
zb

za

ϕ⋅′−ϕ⋅′=

′

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
ϕ∫ xx  (23) 

we obtain from (22): 
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( ) ( )zexpzF θ−θ=′  with 0,0z >θ≥  (24) 

 
 Since 
 

θ
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

θ
11̂E  and 2n

11̂Var
θ

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

θ
 (25) 

the property (i) is proved. 
Now, since each variable is exponentially distributed, then its sum is Gamma 

distributed (see Johnson et al, 1994 [14, page 337 and page 494]). The density of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

θ
1̂

 is 

therefore 

( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

θ
θ−⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

θΓ
θ

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
θ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

θ
ϕ

−
1̂nexp1̂

n
nn,;1̂

1nnn

 (26) 

where { } ( )nand0\Nn,0,01̂
Γ∈>θ>⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

θ
 is the Gamma function; here we have 

( ) !n1n =+Γ  (the property (ii) is also proved). 

To demonstrate (iii), we may write the characteristic function of U, and we have: 
 

( ) ( ) ( ) ( ) ( )∏∑
=

−
−

=

− −=⎟
⎠
⎞

⎜
⎝
⎛ λ

θ
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+θ==ϕ

n

1j

n
1n

1j

jitu
U it21t211e1lnt2iexpEeEt x  (27) 

which is just the characteristic function of a Chi-square variable with 2n degrees of freedom 
(see for instance Wilks, 1962 [20 page 86]). 

Based on this property, one can construct confidence intervals of minimum length 

(L) for θ . Namely, we have to determine two limits Linf and Lsup such that 

{ } α−=<θθ< 1Lˆ/n2LobPr supinf  (28) 

where α<α< ,10 - given, with the property (29) ( )=−= infsup
0

LL
Y2
1L minimum, where 

( )∑ −+=
n

ieY
1

x
0 1ln . 

In accordance with Tate and Klett`s results (1959, [17]) the following system has to 
be solved: 

( ) ( )∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Γ−=

−

−−
sup

inf
2

exp;12 infsup
1

inf

sup2/1
L

L

n
nun LL

L
L

ndueu α  (30) 

The solutions (Linf, Lsup) are founded by entering Tate - Klett`s tables in the cell 
corresponding to 2n degrees of freedom (see also Isaic-Maniu and Vodă, 1989 [10]). 
 



  
Quantitative Methods Inquires 

 

 
37 

4. (P, γ) - type tolerance limits 
 

The literature devoted to the problem of statistical (or “natural”) tolerance is very 
wide. In 1981, Miloš Jílek (Prague) compiled a large bibliography on this subject matter (see 
Jílek [12]) and in 1988 the same author (see Jílek [13]) provided a sound monograph with 
applications (chapter 12, pages 198 - 235 of [13]) of these tolerances. 

Origin of this concept - which goes back to W. A. Shewhart (1891 - 1967), Samuel 
S. Wilks (1906 - 1964), Abraham Wald (1902 - 1950), Herbert Robbins (1915 - 2001) - and 
some other (historical aspects may be found in [7]). 

The mathematical formulation of the problem is the following: if X is a continuous 

random variable defined on RD ⊆  and having a density function ( )θ;f x , then we have to 

construct two statistics TL and TU (lower and upper) such that at least a proportion (P) of this 
population {X} will be found between TL and TU, and this must happen with a given 

probability ( )10 <γ<γ , that is. 

( ) γ=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≥θ∫
u

L

T

T

Pd;fobPr xx  (31) 

where 1,P0 <γ<  are previously chosen. These elements ( )n21L ,,T xxx …ϕ=  and 

)nUT x,x,x 21 …Ψ= where { } ni1i ≤≤x  are sample values on X are called ( )γ,P  - type 

tolerance limits. In a reliability context one is interested in a lower tolerance limits since 

[ )+∞≡ ,0D:X  and we need that at most a proportion (1 - P) of the population to lie 

between 0 and TL. 
In our logistic case, we shall write: 

( ) γ=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≥θ∫
∞+

LT

Pd;fobPr xx  (32) 

Two ways to deduce TL will be presented. 
a) The case of large samples  In this situation, we may state that the 

statistic 
 

n
1

11̂

Y

θ

θ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
θ

=  (33) 

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

θ
1̂

 is the MLE of  θ/1 , is approximately normally distributed with E [Y] = 0 and  

Var [Y] = 1. 
The relationship (32) may be written as. 

 

( ){ } γ=≥+−
θ−− Pe11obPr LT  (34) 

or 
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( ) ( ){ } γ=+θ−≥− − LTe1lnP1lnobPr  (35) 

 

( )
( ) γ=

⎭
⎬
⎫

⎩
⎨
⎧

−−
+

≤
θ

−

P1ln
e1ln1obPr

LT

 (36) 

which may be rearranged as follows: 
 

( )
( ) γ=

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

θ
θ

−
−−

+

≤
θ

θ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
θ

−

n/1

1
P1ln

e1ln

n/1

11̂

obPr

LT

 (37) 

(we did replace θ/1  in (36) by its MLE). 
 

The right-hand side of the inequality in (37) is just the γ  - quantile of N (0, 1) 

distribution - let it be γu  - and hence we may write: 

( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

θ
=

−−
+ γ

−

n
u

11̂
P1ln

e1ln LT

 (38) 

or 

( )
P1

1ln
n

u
11̂e1ln LT

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

θ
=+ γ−  (39) 

 

Since 1e0 LT << − , then we could use the approximation of  ln (1+x), 0 < x < 1 

given in Abramowitz and Stegun (1964, [1]) to find a polynomial equation in TL : 

( ) ( )xε++++=+ 5
5

2
21 xaxaxax1ln …  (40) 

where the error ( ) ( ) 510is −<εε xx  and 99949556.0a1 ≈  a.s.o. One may restrict the 

approximation to the roughest one, namely: 

( ) LL T
1

T eae1ln −− ⋅≈+  (41) 

and hence TL may be deduced easily by taking logarithms in (39). 
We did call this method to find statistical tolerances as “normalizing” one (see Isaic-

Maniu and Vodă, 1981, [9], and 1993, [10]. 
  

b) The general case. When we have an arbitrary sample size, we may re-write 
(35) as follows: 

( ) ( ) γ=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+⋅
+
−≤

θ
θ ∑

=

−
−

n

1i
T

MLE

i

L
e1ln

e1ln
P1

1ln1

ˆ
n2obPr x  (42) 
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Since MLE
ˆ/n2 θθ  is Chi-square ( )2χ  distributed with 2n degrees of freedom, the 

righ-hand side in the inequality of (42) is just the γ  - quantile of the ( )2χ  distribution - let it 

be ( )γχ ;n2
2 . Therefore, a similar equation with (39) is obtained: 

 

( ) ( )iL e
P

e
n

in

T x

1;2
2 1ln

1
1ln11ln −

=

− +⋅
−

⋅=+ ∑
γχ

 (43) 

 

5. A discussion on the hazard rate 
 

If X is a continuous random variable representing the time-to-failure of a certain 
device, then the hazard (or failure) rate associated to X is given as: 

( ) ( )
( )x1

xx
F
fh
−

=  (44) 

where F(x) is the cdf of X and ( ) ( )xx fF =′  is the corresponding density. The variable X is 

assumed to be positive. 
In our case we have to work with the truncated variable. Suppose that our logistic is 

truncated at x = 0, that is [ )+∞∈ ,0x . Therefore: 

( ) ( ) ( ) ( ) ( )[ ]θ−θ⋅=θ
θ−

=θ ∫ ,0F;FKdu;uF
;0F1

1;F
0

T xx
x

 (45)  

where ( )12/2K −= θθ  and ( ) θ=θ 2/1;0F . 

In this situation, we have: 
 

( ) ( )
( )

( ) ( )

( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

+

+⋅
−=

−
=

+−−−

θθ

θ

θ

θ

θ

θ
θ

θ

2
1

1
1-1

1
12

2

;x1
;x

;x

x-

1xx

e

ee

F
f

h
T

T
T  (46) 

or 

( ) ( )

( )θθ

θ

+θ
−

θ

θ

+
−

−
+

⋅
−
⋅θ

=θ

x-

x-
x

x

e1
1

2
12

e1
1e

12
2

;h
1

T  (47) 

The study of  ( )θ;hT x  may be performed denoting ye =−x  (we have 0 < y < 1) 

and consequently, we get. 

( ) ( )

( )θ

+θ

+
−

+
⋅θ

=θ

y1
1

K
1

y1
1yK

;h
1

T y  (48) 

or 
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( )
( )[ ]( )

1y0,
y1Ky1

yK;h
2

T <<
+−+

θ
=θ θy  (49) 

An interesting situation arises when we consider the reduced form of the logistic 

( ) ( ) R,e1/1F ∈+= − xx x  and write formally: 

( ) ( ) ( )xx F
F1
F1F

F1
d
dF

xh =
−
−

=
−

=  (50) 

In this case, the hazard rate coincides with the distribution function and the 
behaviour of  h(x) is now obvious. 
 

6. Testing a simple statistical hypothesis 
 

Since only one parameter is involved in ( )θ;F x , we may make use of the fact that 

( )ie1ln2ˆ
n2U

n

1iML

x−

=

+⋅θ=
θ
θ

= ∑  (51) 

is Chi-square distributed with 2n degrees of freedom and hence to test: 

00 :h θ=θ  versus ( )1011 :h θ<θθ=θ  (52) 

the critical value will be αχ
α

(
;2

2
n

- quantile of the 2χ  distribution with 2n degrees of 

freedom). 
More economical is to apply SPRT (Sequential Probability Ratio Test) of Abraham 

WALD (1902 - 1950) - see his well - known book [ 19  , Chapter 3, pages 37 - 54]. 
We shall write straightforwardly the logarithm of likelihood ratio (rn): 

( ) ( )ie1lnlnnrln
n

1i
10

0

1
n

x−

=

+⋅θ−θ+
θ
θ

⋅= ∑  (53) 

where ( )…… ,n,,2,1ii =x  is the sequential sample. 

In accordance with Wald`s rules [19, page 49] we could take the following 
decisions: 

 
a) If 

( )
01

0

1

01

n

1i

ln
nAlne1ln i

θ−θ
θ
θ

⋅+
θ−θ

≥+∑
=

− x  (54) 

we accept (H0) and automatically reject the alternative (H1): 
 
b) If 

( )
01

0

1

01

n

1i

ln
nBlne1ln i

θ−θ
θ
θ

⋅+
θ−θ

≤+∑
=

− x  (55) 

then reject the null hypothesis (H0) and accept (H1) 
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c) If 

( )
01

0

1

01

n

1i01

0

1

01

ln
nAlne1ln

ln
nBln

i

θ−θ
θ
θ

⋅+
θ−θ

<+<
θ−θ
θ
θ

⋅+
θ−θ ∑

=

− x  (56) 

then, the procedure continues by taking the next observation. 

Here ( ) ( ) βαα−β=αβ−= ,,1/Band/1A  being the classical statistical risks 

in the theory of hypothesis testing (see Wilks, 1962 [20]). 
The OC - function (the Operative Characteristic) of the test is given by: 

( ) ( ) ( )hhh BA/1AL −−=θ  where h is the solution of Wald`s equation 

( ) ,0h,1eE th ≠=
( )
( )0

1

;f
;flnz
θ
θ

=
x
x

. 

In our case: 

( ) ( )x−+⋅θ−θ+
θ
θ

= e1lnlnz 10
0

1  (57) 

and consequently: 

( ) ( )10h
n

0

1zh e1e θ−θ−+⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θ
θ

= x  (58) 

and 

[ ] ( ) ( ) 1de1eeE 1h
h

0

1zh 10 =+⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θ
θ

=
−θ−θ−θ−

+∞

∞−

−∫ xxx  (59) 

 

Imposing the condition ( ),h 10 θ−θ>θ  we get a parametric representation of the 

OC - function as 

( )

1

h
h

0

1

01

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
θ
θ

θ−θ
=θ  (60) 

The ASN (Average Sample Number) needed to perform SPRT is given be 

( ) ( ) ( )[ ]{ } ( )zE/AlnL1BlnLnE θθ θ−+⋅θ=  

where - in one case: 

( ) ( )
θ
⋅θ−θ+

θ
θ

=θ
1lnzE 10

0

1  

Therefore, the sequential test is completely constructed. We did not re-stated the 
whole theory - all details are given in Wald [19], Dixon and Massey (1972, [4, pages 300 - 
312]) or in more recent works such as those of Govindarajulu (2000 [5]) or Pham (2006, 
[15]). 
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