

Reliability and Quality Control – Practice and Experience

89

1

k
k M

k
k

p λ

λ
=

=

∑

SOFTWARE RELIABILITY FROM THE FUNCTIONAL
TESTING PERSPECTIVE

Mihai POPESCU
PhD, Senior Lecturer
Military Technical Academy, Bucharest, Romania

E-mail: popescum@mta.ro

Abstract: The metrics proposed in this paper give a methodological framework in the field of
the functional testing for the software programs.
The probability of failure for software depends of the number of residual defects; obvious the
detection of these depends very much of data test used, that are conforming with a
operational profile.
But it’s the same true that a linear source code, that have a lot of instructions, but a sequential
structure, is easier tested and debugged than a code with alternative control structures.

Key words: software; reliability; functional testing; metrics

1. A metric of the complexity

There are very much specialists in the field that say the probability of failure for

software depends of the number of residual defects; obvious the detection of these depends
very much of data test used, that are conforming with a operational profile.

But it’s the same true that a linear source code, that have a lot of instructions, but a
sequential structure, is easier tested and debugged than a code with alternative control
structures.

That explains why I defined in [POPE02]1 failure aprioristic probabilities (pk) of
software modules across with theirs cyclomatic complexity.

The choosing of the computing way for the probability pk is determined by the
available data and by the estimation and prediction models for reliability.

A usual weight computing formulas for failure aprioristic probabilities of the
modules is (1):

 (1)

Reliability and Quality Control – Practice and Experience

90

: k
loc

k

Tloc
T

p
⎛ ⎞
⎜ ⎟
⎝ ⎠

where λk=failure intensity of module k, that is calculated by formulas:

 kkk IMer /** ωλ = (2)

Where: Me=4,2*10 7− Musa rate for failures exposure;
 r = processor speed (istructions/s) – can be established from benchmarking
programs or from the technical characteristics given by the sale man;

 kω = number of failures contained by the software module k. It can be

determined in according to [ROME97], transforming source instructions written in a program
language in function points and than determining the number of failures in according to
CMM level (Capability Maturity Model) selected;

 kI = number of executable code lines k * expanded rate [ROME97].

This paragraph wants to deduct new metrics for complexity and reliability based on
functional theory. For this goal, we’ll note with:

Ti=duration of test i;
θj= average duration for locating/recovery of the module j .
Appropriate, we’ll define the duration for locating/recovery of the a failure module

being a random discrete variable, called Tloc, having the next repartition law :

 , where:

 Tlock= duration for locating/recovery cumulated on the branch k of the tree
associated to the program P;
 Pk= failure aprioristic probability of the module k.

For the locating tree of failure modules from fig.2, obtained based on the program
structure proposed in fig. 1, we’ll have the next repartition law for the random discrete
variable Tloc :

 T4+T5 T4+T5 T4+T5 T4+T5 T4+T5

 +T2+θ1 +θ2 +T2+θ3 +θ4 +θ5
 Tloc=
 p1 p2 p3 p4 p5

Appropriate, we’ll have the average duration of locating/recovery for module
Tloc_med, the next expression :

Tloc_med= (T4+T5+ T2+θ1)p1 + (T4+T5+θ2)p2+(T4+T5+T2+θ3)p3 +
+(T4+T5+θ4)p4+(T4+T5+θ5)p5 (3)

Reliability and Quality Control – Practice and Experience

91

Figure 1. The decomposition of a program in modules for testing
 We define variable Πk like:

 (4)

 It can observe that Πk has the next properties:

1) Πk>0;

 2) ,

that means the weight of the module k in the testing and recovery of module k,versus of the
N program modules.

Fixing a duration for locating/recovery, T0
loc_med, to accomplish a mission by

software, the program must be written to satisfy the condition:

 We can observe, in the same time, that descended sorting Πk values on can
see the modules with a big duration for testing/locating of the singular failures, these
modules could be redesigned, eventually.
 If we call E the number of residual defects from program, than:

_

;kloc k
k

loc med

T p
T

⋅
Π =

1
1

N

k
k =

Π =∑

0
_ _ .loc med loc medT T≤

Reliability and Quality Control – Practice and Experience

92

Tloc_gen_med=E Tloc_med . (5)
 If Ti=1,  ∀i and
 θj=1,  ∀j, we have:
 Tloc_med=Mloc_med, and we’ll get the number of steps to locate failure modules.
 The using of these metrics has the next advantages:

- gives a better reflection of the locating and fixing mechanism for the
defects contained in software (based on functional testing);

- gives value to the performances of the testing tools and to the skill of the
debugging personal;

- offers a good support to software products designers, signaling the
modules that need a bigger testing/locating time, suggesting even theirs
redesign.

2. Case study

I’ll compute the average duration of locating (3) and general average duration of
locating (5) based on the methodology proposed at 1. and on the structure of the modules
tree from fig. 1.

According to this structure, we’ll start from the next information that we know about
the modules and functions (table 2).

Table 2. Information known about software modules

Module
Name

Functions Number of
executable
instructions

function/module

Probability of
execution

function/module

Programming
Language

M1 ⎯ 3 1 C++

M2 push(z);
z ∈ [1,50]

15 1 C++

M3 ⎯ 4 1 C++

M4 push(z),top(z),
pop(z);
z ∈ [1,50]

push(z) - 15
pop() - 10
top(z) - 5

pop() – 0.8
top(z) – 0.1

push(z) – 0.1

C++
C++
C++

M5 push(z),pop(),
top(z);z ∈ [1,50]

push(z) - 15
pop() - 10
top(z) - 5

push(z) – 0.8
top(z) – 0.1
pop() – 0.1

C++
C++
C++

 For this goal, we proceed the next steps:

 1°)The calculation of the modules’ failure aprioristic probabilities with (3)
and (4) formulas.
 We admit the hypothesis that software will be executed on a 2 MIPS computer,
meaning r=2000000, and CMM level is 3, a common used level for IT companies [PAUL93].

 With the explanations given for (2) and with information obtained from [POPE02],
we’ll have:

⋅

Reliability and Quality Control – Practice and Experience

93

 =1ω 3 : 53 * 1.63 = 0.923 defects;

 =2ω 15 : 53 * 1.63 = 0.461 defects;

 =3ω 4 : 53 * 1.63 = 0.123 defects;

 =4ω (15+10+5) : 53 * 1.63 = 0.923 defects;

 =5ω (15+10+5) : 53 * 1.63 = 0.923 defects;

 =1I (3 source lines) * (object instructions/source line) = 18 object instructions;

 =2I (15 source lines) * (6 object instructions/source line) = 90 object instructions;

 =3I (4 source lines) * (6 object instructions/source line) = 24 object instructions;

 =4I (30 source lines) * (6 object instructions/source line) = 180 object instructions;

 =5I (30 source lines) * (6 object instructions/source line) = 180 object instructions;

 Replacing these values, we’ll have:

 11 ωλ ∗∗= Mer / defects
defect
failures

ond
nsinstructioI 092.0102.4

sec
2000000 7

1 ∗⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅∗= −

 /18 = 0.0042
ond

defects
sec

 () ;
sec

0044.024123.07103.420000002 ond
defects

=∗−∗∗=λ

 ;
sec

044.024123.0*)7102.4(20000003 ond
defects

=−⋅∗=λ

 ;
sec

045.0180923.0)7102.4(20000004 ond
defects

=∗−⋅∗=λ

ond

defects
sec

045.0180923.0)7102.4(20000005 =∗−⋅∗=λ ;

 ;
sec

0219.054321 ond
defects

=++++ λλλλλ

 The value a little big for the failure intensity is explained by the big number of
instructions contained by modules and by r value(2 MIPS), big enough.
 Applying formula(1), we have:

;193.00219.00042.0
5

1
11 === ∑

=i
ip λλ

;196.00219.00043.00219.022 === λp

;201.00219.00044.00219.033 === λp

;205.00219.00045.00219.044 === λp

.205.00219.00045.00219.055 === λp

Reliability and Quality Control – Practice and Experience

94

According to the values of these probabilities, FIAB program [GHIT96] displays
failure tree from fig. 2.

Figure 2. Locating tree of defect modules

2°) The determination of average duration for locating/testing of the

modules

To determine iT time we take in account the probability of execution of each

function and the results testing made in according with the specifications for that function.
That is:

 ,__*)____(
mod__

1
j

fnr

j
jji fexpfspraptestfdurataT

i

∑
=

+= (6)

 where:

 ifnr mod__ = number of functions from module i tested;

=jfexp __ probability of execution of function j;

=jfdurata _ execution time of function j;

=jfspraptest ___ testing time of function j results in according with the

specifications;
We established the next values T.U.(Unites of Time) for used functions(table 3):

Table 3. Execution and testing times in according with the specifications and the times for
locating/recovery for the functions used in modules
Function Name Execution Time Testing time in according

with the specifications
Average

locating/recovery time
Push(z) 30 T.U. 20 T.U. 300 T.U.
Pop() 25 T.U.. 20 T.U. 250 T.U.
Top (z) 20 T.U.. 15 T.U. 100 T.U.

5V

2V 4V

2V
4M

2M 5M

3M 1M

0 1

1

1

10 0

0

Reliability and Quality Control – Practice and Experience

95

Starting from formulas:

,__*)____(
mod__

1
j

fnr

j
jji fexpfspraptestfdurataT

i

∑
=

+= (see 6)

∑
=

=
ifnr

j
ji frestlocdurata

mod__

1
___θ (7),

where:

 =jfrestlocdurata ___ locating/recovery time of function j in module i,

we’ll have:

 =1T execution time for 3 source instructions(6 T. U.) + testing time in according with

the specifications (0 T. U.) = 6 T. U.);

 =1θ 1 T. U. (a simple instruction if.... then ….else);

 =2T (30 T. U. + 20 T. U.) *1 = 50 T. U.;

 3002 =θ T. U.;

 =3T (7 T. U.+ 0 T. U.) = 7 T. U.;

 =3θ 1 T. U. (a simple instruction if …then…else);

 =4T (30+20) ⋅ 0,1+(25+20)⋅ 0,8 +(20+15)⋅ 0,1=50⋅0.1+45⋅0.8+35⋅0,1 = 44.5 T.

U.;

 =4θ 300 ⋅ 0,1+250⋅0,8+100⋅0,1 = 240 T. U.;

 =5T (30+20)⋅ 0,8+(25+20)⋅0,1+(20+15)⋅ 0,1 = 50⋅0,8+45⋅0,1+35⋅0,1 = 48 T.

U.;

 =5θ 300⋅0,8+250⋅0,1+250⋅0,1 = 290 T. U.

For the locating tree of defect modules from fig. 2, we’ll have the next repartition law for the

discreet random variable T loc :

54321

5435215

5452425242

ppppp

TT

TTTTTTTTTT

Tloc
θθθθθ +++++++

+++++

=

Reliability and Quality Control – Practice and Experience

96

..2495,282

205.0)290485,44(205,0)2404850(201.0)1485.4450(196.0
)3004850(193.0)1485.4450()()(

)()()(

55544452

33542225211542_

UT

pTTpTT

pTTTpTTpTTTT medloc

=⋅+++⋅+++⋅++++⋅
+++⋅+++=⋅+++⋅+++

⋅++++⋅+++⋅+++=

θθ

θθθ

 3°) The determination of average testing and locating/recovery duration of
the modules, using the residual number of defects into a program, with formula (5):

medlocmedlocmedgenloc TTET _54321___)(⋅++++=⋅= ωωωωω

 =(0.092+0,461+0,123+0,923+0.923)*282,2495
 = 2,522*282,2495 ≈ 711,833 T.U.

4°) The determination of the weights and theirs importance (formula 4):

098,02495,2826955,27)(_11542_111 ==⋅+++=⋅=Π medlocmedloc TpTTTTpTloc θ ;

=⋅=Π medlocTpTloc _222 276,02495,282008,78)(_2252 ==⋅++ medlocTpTT θ ;

102,02495,282/8435,28)(_33542_233 ==⋅+++=⋅=Π medlocmedloc TpTTTTpTloc θ ;

=⋅=Π medlocTpTloc _444 245,02495,28229.69)(_4452 ==⋅++ medlocTpTT θ ;

=⋅=Π medlocTpTloc _555 278,02495,2824125,78)(_5554 ==⋅++ medlocTpTT θ .

The decrease row of kΠ values is:

13425 ,,,, ΠΠΠΠΠ , and this means that the module with the most locating/testing time is

M5 and the module with the least locating/testing time is M1, this thing allowing to
designers and programmers to redesign and grow the performances of critical
modules(regarding of testing/recovery times).

3. General conclusions

 The metrics proposed in this paper give a methodological framework in the field of
the functional testing for the software programs.
These metrics have the next capabilities:
 − give a good understanding for functional testing and locate/recovery mechanism
of the software modules of a program;

− give a better appraisal to the performances of the testing tools and to the skill of
the debugging personal(by locating/recovery time of a function into a module);

− identify the modules that need a big locating/testing time (by decrease sorting of
the weights), asking a possible redesign for the intensive resources modules.

Reliability and Quality Control – Practice and Experience

97

Bibliography

1. Boehm, J., Saib, B. Error Seeding Technique Specification, Prepared under Contract Number

NAS 2-10550 by Hughes Aircraft Company, Fullerton and General Research
Corporation, Santa Barbara, California, USA, 1980

2. Ghita, A., Ionescu, V. Metode de calcul in fiabilitate, Course, Technical Military Academy,
Bucharest, 1996

3. Goron, S., Fiabilitatea Produselor Program, Universitatea Babes-Bolyai, Cluj-Napoca, Ed.
Risoprint, 2000

4. Paulk, M., Curtis, B., s.o., Capability Maturity Model for Software, Version 1.1, Software
Engineering Institute, Carnegie Mellon University, Pittsburg, Pensylvania, USA, 1993

5. Popescu, M., Managementul Fiabilitatii Aplicatiilor Software Militare, PhD Dissertation,
Technical Military Academy, Bucharest, 2002

6. System and Software Reliability Assurance Notebook, Produced for Rome Laboratory, New
York, 1997

1 Codifications of references:
[BOEH81] Boehm, J., Saib, B. Error Seeding Technique Specification, Prepared under Contract Number

NAS 2-10550 by Hughes Aircraft Company, Fullerton and General Research Corporation, Santa
Barbara, California, USA, 1980

[GHIT96] Ghita, A., Ionescu, V. Metode de calcul in fiabilitate, Course, Technical Military Academy,
Bucharest, 1996

[GORO00] Goron, S., Fiabilitatea Produselor Program, Universitatea Babes-Bolyai, Cluj-Napoca, Ed.
Risoprint, 2000

[PAUL93] Paulk, M., Curtis, B., s.o., Capability Maturity Model for Software, Version 1.1, Software
Engineering Institute, Carnegie Mellon University, Pittsburg, Pensylvania, USA, 1993

[POPE02] Popescu, M., Managementul Fiabilitatii Aplicatiilor Software Militare, PhD Dissertation,
Technical Military Academy, Bucharest, 2002

[ROME97] System and Software Reliability Assurance Notebook, Produced for Rome Laboratory, New
York, 1997

