

Software Analyses

98

ON MEASURING SOFTWARE COMPLEXITY

Adrian COSTEA1
PhD, University Lecturer
Academy of Economic Studies, Bucharest, Romania

E-mail: acostea74@yahoo.com Web page: http://www.abo.fi/~acostea

Abstract: In this paper we measure one internal measure of software products, namely
software complexity. We present one method to determine the software complexity proposed
in literature and we try to validate the method empirically using 10 small programs (the first
five are written in Pascal and the last five in C++). We have obtained results which are
intuitively correct, that is we have obtained higher values for average structural complexity and
total complexity for the programs which “look” more complex than the others, not only in
terms of length of program but also in terms of the contained structures.

Key words: software; complexity; measurement

1. Introduction

Software quality is the degree to which software possesses a desired combination
of attributes such as maintainability, testability, reusability, complexity, reliability,
interoperability, etc. (IEEE, 1992). In other words, quality of software products can be seen as
an indirect measure and is a weighted combination of different software attributes which can
be directly measured. Moreover, many practitioners believe that there is a direct relationship
between internal and external software product attributes. For example, a lower software
complexity (seen here as a structural complexity) could lead to a greater software reliability
(Fenton & Pfleeger, 1997).

Measuring complexity of software products was, and still is, a widely distributed
research subject. The scope of studying it was to control the levels of the external attributes
of software via internal attributes, like complexity is. The most well-known internal attribute
is software length. Another is complexity. While in the case of length is a quite well defined
consensus about the ways the length should be measured, in the case of complexity is still a
lot of confusion.
It is not wrong to say that there is a relationship between complexity and the length of the
program. But, all authors agree that when measuring complexity one should take into
account something different from length and length at the same time. This approach was
followed in Törn et al. (1999) where a new measure of software complexity called structural
complexity is derived.
In the literature there are several measures of complexity, the most used ones being:
• length defined as the number of lines of codes and

Software Analyses

99

• McCabe’s cyclomatic complexity which measures something else than just length:

dne +=+−= 12ν
where ν is the cyclomatic complexity of the flowgraph f, e is the number of edges, n the

number of nodes, and d is the number of predicate nodes of f.
The longer the program is, the more predicate nodes it has. This leads to normal

conclusion that McCabe’s cyclomatic number is strongly correlated with length. The problem
with McCabe’s cyclomatic number is that is not a “good” measure of complexity, since
smaller programs (in terms of lines of code) are much more complex in terms of their
intrinsic functions. In order to eliminate the correlation, some authors proposed other
measures such as complexity density defined as the ratio of cyclomatic complexity to
thousand of lines of code (Gil & Kemerer, 1991).

McCabe (1976) proposed a derived complexity measure called essential complexity
measure (νe): me −=νν where ν is the cyclomatic number and m represents the
number of sub-flowgraphs of f that are D-structured primes (Fenton & Pfleeger, 1997, p.
288).

Bache (1990) proposed a series of axioms and a number of measures that satisfy
the axioms, the VINAP measures, to characterize the software complexity. Woodward et al.
(1979) proposed the so-called knot measure that is defined as the total number of points at
which control-flow lines cross.

When measuring software complexity we have to be very cautious on which metrics
we use. The authors in Törn et al. (1999) state that one can obtain wrong result if he/she
compares two different programs using one complexity measure and other two using
another one. Another problem raised by the authors is that of establishing acceptable
axioms for complexity measures. The failure to realize the existence of different views about
complexity leads to conflicting axioms.

Next we present an overview of the software complexity model proposed in Törn et
al. (1999), and then, we apply this methodology on some example programs in order to
empirically validate it.

Methodology

The model to calculate the total complexity of a piece of software (p) is as follows:

)()()(pcplpe =

where e(p) is the total complexity, l(p) is the length of the software, and c(p) is the average

structural complexity. For a collection of software units },...,,{ 21 npppP = we calculate c(P)

as the average of the individual units complexity:

∑

∑

=

=== n

i
i

n

i
ii

n

pl

pcpl
pppcPc

1

1
21

)(

)()(
),...,,()(

Software Analyses

100

The individual unit lengths and total complexities are additive. So, if we add them
we obtain the length of the collection (l(P)) and, respectively, the total complexity of the
collection (e(P)).

In Törn et al. (1999) the authors use the above equations for the software
collections and define new formulas that use some constants. The constants are different
from one control structure to the other. Next we give the three formulas (sequence, choice,
iteration) for average structural complexity using these constants:

),...,,();...;;(2121 nsn pppccpppc = - sequence

),,()(qpbccifc if= - choice: “if b then p else q”

),()(pbccwhilec do= - iteration: “while b do p”

In general, when applying the model we consider 5.13.11.1 =<=<= doifs ccc

which is intuitive since we assign to the more complex structure a greater importance when
calculating the complexity.

We can have the same reasoning (adding some constants) when we calculate the

lengths of different control structures. For example:),,()(qpbllifl if += . For simplification

(when applying the methodology for our example programs) we will consider all these

constants zero (0==== dgodoif llll).

Using these formulas the complexity of any program can be computed given the
lengths and average complexities of the smallest parts (atoms): assignment statement,
expressions, procedure calls and goto’s. In our experiment we consider all these to have the
value of 1 (as it is suggested in Törn et al. (1999)).

The unique feature of the model resides in the fact that no other complexity model
found in literature has such a two dimensional structure in representing the complexity. Also,
the theoretical properties of the model that cover unstructuredness, sequencing, nesting,
modularization and layout are intuitively correct. In order to be able to apply the
methodology we have to write the programs in “node representation”. Using this
representation, decision nodes, assignment statements and goto nodes are given as: (b la ca),
(n la ca), and (go la ca) respectively, where la and ca are the length and complexity of the
atoms.

In the next section we apply this methodology on some example programs and try
to validate it empirically.

Results

We start the empirical evaluation by testing the complexity of some basic structures
(p) and changes of the basic structures (p’):

Sequential structure:

Let p = {a;b}, where a, b are simple assignment statements. Then this can be

written using the “node notation” as: (S(n 1 1)(n 1 1)) = (n 2 1.1) =>l = 2; c = 1.1 and e =
2.2.

Software Analyses

101

Now let p’ = {a;b;c}, where a, b, c are simple statements (assignment statements
or defining statements). Then, in node notation the structure will be (s(n11)(n11)(n11)) = (n
3 1.1*(1+1+1)/3) = (n 3 1.1) => l = 3, c =1.1 and e = 3.3.

Conclusion: p’ is more complex than p. It is obvious that the average complexity or
the complexity density is equal for p and p’, since both structures consists only of program
nodes. But the total complexity of p’ is greater than the total complexity of p.

Choice structure (IF a then p else q):

Let p = (If a then b else c), where a is a decision node and b, c are simple

statements (program nodes). In node notation this will be written as:
 (if (b 1 1) (n 1 1) (n 1 1)) = (n 3 1.3*(1+1+1)/3) = (n 3 1.3) => l = 3, c = 1.3 and

e = 3.9.
Let p’=(If (a and b) then c else d), where a, b are decision nodes (Boolean

expressions) and c, d are program nodes. Using node notation:
(if (b 2 1) (n 1 1) (n 1 1)) = (n 4 1.3) =>l = 4, c = 1.3 and e = 5.2.
Now let p’’ = (If a then (b and c) else d), where a is a decision node and b, c, d are

program nodes. Using node notation:
 (if (b 1 1) (s(n 1 1) (n 1 1))(n 1 1)) = (if (b 1 1) (n 2 1.1) (n 1 1)) = (n 4

1.3*(2+2.2)/4) =
 (n 4 1.365) => l = 4, e = 1.365 and e = 5.46.

Conclusion: p’’ is more complex than p’, which is more complex than p. Here the

average complexity or complexity density is the same for p and p’. It is right because the
both structures p and p’ are basic, with the only difference that the decision node in p’ is of
length 2. In the p’’ structure is included a sequential structure, which has the average
complexity 1.1. This will increase the average complexity of if structure, and implicitly the
total complexity.

Iteration structure (Do-while)

Let p = (While a do b), where a is a decision node and b is a program node. In
node notation this is written as: (do (b 1 1) (n 1 1)) = (n 2 1.5). That is, the complexity
density c=1.5 and the overall complexity e=3, and the length is l = 2.

Now let p’ = (While a do (b and c)). In node notation, the structure will be:
(do (b 1 1) (s(n 1 1) (n 1 1))). This will be written further on as:
(do (b 1 1) (n 2 1.1)) = (n 3 1.5*(1+2.2)/3) = (n 3 1.6). This means that the

average complexity (complexity density) is c=1.6, the length of the structure is l=3, and the
overall complexity is e=4.8.

Conclusion: p’ is more complex than p. The complexity density of p’ is greater than
that of p, and also the overall complexity of p’(e’=4.8) is greater that that of p (e=3).

Then we collected 10 programs for which we computed the values (l, c, e). The
programs and the calculations are:

Software Analyses

102

1st Program
program ex1;
var x: integer;
procedure p(y:integer);
begin
writeln(Y:3);
if y>3 then
begin
write('123');
writeln;
end
end;
begin
x:=3;
while x<=5 do
 begin
p(x);
x:=x+1
end;
end.

(s(n 1 1)
 (n 1 1)
 (s(n 1 1)
 (do(b 1 1)
 (s(n 1 1)
 (if(b 1 1)
 (s(n 1 1)
 (n 1 1)
)
)
 (n 1 1)
)
)
)
)

The average structural complexity c = 1.947.
The program length l = 9
Overall complexity e = 17.52.

2nd Program
program ex2;
var counter: integer;
begin
counter:=1;
while counter<20 do
begin
write('We are inthe loop, wainting');
write('for the counter to reach 20. It is', counter:4);
writeln;
counter:=counter+2;
end;
end.

(s(n 1 1)
 (n 1 1)
 (s(n 1 1)
 (do(b 1 1)
 (s(n 1 1)
 (n 1 1)
 (n 1 1)
 (n 1 1)
)
)
)
)

The average structural complexity c = 1.65.
The program length l = 8
Overall complexity e = 13.211

3rd Program
program ex3;
const string_size=30;
type low_set=set of 'a'..'z';
var data_set: low_set ;
storage: string[string_size];
index: 1..string_size;
print_group:string[26];
begin
data_set:=[];
print_group:='';

(s(n 1 1)
 (n 1 1)
 (n 1 1)
 (n 1 1)
 (n 1 1)
 (n 1 1)
 (n 1 1)
 (s(n 1 1)
 (n 1 1)
 (n 1 1)

Software Analyses

103

storage:='This is a set for test';
index:=1;
while index<=length(storage) do begin
 if storage[index] in ['a'..'z'] then
 if storage[index] in data_set then
 writeln(index:4, ' ',storage[index],' is already in the set')
 else begin
 data_set:=data_set+[storage[index]];
 print_group:=print_group+storage[index];
 writeln(index:4,'',storage[index],' added to group, complete
group= ',print_group);
 end;
 else
 writeln(index:4,' ',storage[index],' is not a lower case letter');
index:=index+1;
end;
end.

 (n 1 1)
 (do(b 1 1)
 (s(if(b 1 1)
 (if(b 1 1)
 (n 1 1)
 (s(n 1 1)
 (n 1 1)
 (n 1 1)
)
)
 (n 1 1)
)
 (n 1 1)
)
)
)
)

The average structural complexity c = 1.97
The program length l = 20
Overall complexity e = 39.425

4th Program
program ex4;
var index, count: integer;
checkerboard: array[1..8]of array[1..8] of integer;
value: array[1..8,1..8] of integer;
begin
index:=1;
while index<=8 do begin
 count:=1;
 while count<=8 do begin
 checkerboard[index,count]:=index+3*count;
 value[index,count]:=index+2*checkerboard[index,count];
 count:=count+1;
 end;
 index:=index+1;
end;
writeln('Output of checkerboard');
writeln;
index:=1;
while index<=8 do begin
 count:=1;
 while count<=8 do begin
 write(checkerboard[index,count]:7);
 count:=count+1;
 end;
 writeln;
 index:=index+1;
 end;
value[3,5]:=-1;
value[3,6]:=3;
value[3,7]:=2;
count:=1;
while count<=3 do begin
writeln;

(s(n 1 1)
 (n 1 1)
 (n 1 1)
 (n 1 1)
 (s(n 1 1)
 (do(b 1 1)
 (s(n 1 1)
 (do(b 1 1)
 (s(n 1 1)
 (n 1 1)
 (n 1 1)
)
)
 (n 1 1)
)
)
 (n 1 1)
 (n 1 1)
 (n 1 1)
 (do(b 1 1)
 (s(n 1 1)
 (do(b 1 1)
 (s(n 1 1)
 (n 1 1)
)
)
 (n 1 1)
 (n 1 1)
)
)
 (n 1 1)
 (n 1 1)
 (n 1 1)

Software Analyses

104

count:=count+1;
end;
writeln('output of value');
writeln;
count:=1;
while count<=8 do begin
 index:=1;
 while index<=8 do begin
 write(value[count,index]:7);
 index:=index+1;
 end;
 writeln;
 count:=count+1;
 end;
end.

 (n 1 1)
 (do(b 1 1)
 (s(n 1 1)
 (n 1 1)
)
)
 (n 1 1)
 (n 1 1)
 (n 1 1)
 (do(b 1 1)
 (s(n 1 1)
 (do(b 1 1)
 (s(n 1 1)
 (n 1 1)
)
)
 (n 1 1)
 (n 1 1)
)
)
)
)

The average structural complexity c = 1.97
The program length l = 39, Overall complexity e = 76.98

5th Program
Program ex5;
var index, count: integer;
checkerboard: array[1..8]of array[1..8] of integer;
value: array[1..8,1..8] of integer;
begin
index:=1;
while index<=8 do begin
 count:=1;
 while count<=8 do begin
 checkerboard[index,count]:=index+3*count;
value[index,count]:=index+2*checkerboard[index,count];
 count:=count+1;
 end;
 index:=index+1;
end;
writeln('Output of checkerboard');
writeln;
index:=1;
while index<=8 do begin
 count:=1;
 while count<=8 do begin
 write(checkerboard[index,count]:7);
 count:=count+1;
 end;
 writeln;
 index:=index+1;
 end;
count:=1;
while count<=3 do begin
writeln;
count:=count+1;

(s(n 1 1)
 (n 1 1)
 (n 1 1)
 (n 1 1)
 (s(n 1 1)
 (do(b 1 1)
 (s(n 1 1)
 (do(b 1 1)
 (s(n 1 1)
 (n 1 1)
 (n 1 1)
)
)
 (n 1 1)
)
)
 (n 1 1)
 (n 1 1)
 (n 1 1)
 (do(b 1 1)
 (s(n 1 1)
 (do(b 1 1)
 (s(n 1 1)
 (n 1 1)
)
)
 (n 1 1)
 (n 1 1)
)
)
 (n 1 1)

Software Analyses

105

end;
writeln('output of value');
writeln;
count:=1;
while count<=8 do begin
 index:=1;
 while index<=8 do begin
 write(value[count,index]:7);
 index:=index+1;
 end;
 writeln;
 count:=count+1;
 end;
end.

 (do(b 1 1)
 (s(n 1 1)
 (n 1 1)
)
)
 (n 1 1)
 (n 1 1)
 (n 1 1)
 (do(b 1 1)
 (s(n 1 1)
 (do(b 1 1)
 (s(n 1 1)
 (n 1 1)
)
)
 (n 1 1)
 (n 1 1)
)
)
)
)

The average structural complexity c = 2.27
The program length l = 36
Overall complexity e = 81.81

As a first observation, when comparing the results obtained for the 4th program
with those for the 5th program, we can state that even the length of the program 5 is lower
that the length of program 4 (36<39), the average complexity of program 5 is greater than
that of program 4 (2.27>1.97). This is true and intuitively explained by the fact that the
density of complex structures in program 5 is greater than that in program 4. The difference
in size (39-36) is explained by the three assignment statements (value[3,5]:=-1;
value[3,6]:=3; value[3,7]:=2;) which appear only in program 4 and have a lower value for
complexity.

This shows that taking just length as a complexity measure is not a correct way to
evaluate the quality of a software product of being complex or not. Even though the length is
high, it is possible that the program is easily readable and easy to maintain, if it consists of
few complex and nested structures and much many simple statements.

6th Program
void merge(apvector<int> &a, int first, int mid, int last) {
 int aPtr=first, bPtr=mid+1, cPtr=first;
 int total=last-first+1, loop;
 bool doneA = false, doneB = false;
 apvector<int> c(a.length());
 for (loop=1; loop<=total; loop++) {
 if (doneA) {
 c[cPtr] = a[bPtr];

 bPtr++;
 }
 else
 if (doneB) {
 c[cPtr] = a[aPtr];

(s (n 1 1) // aPtr = …
(n 1 1) // bPtr = …
(n 1 1) // cPtr = …
(n 1 1) // total = …
(n 1 1) //doneA = false
(n 1 1) // doneB = false
(n 1 1) // constructor call
(n 1 1) // loop = 1
(do (b 1 1)
 (s (if (b 1 1)
 (s (n 1 1)
 (n 1 1)
)

Software Analyses

106

 aPtr++;
 }
 else
 if (a[aPtr] < a[bPtr]) {
 c[cPtr] = a[aPtr];

 aPtr++;
 }

 else {
 c[cPtr] = a[bPtr];
 bPtr++;

 }
 cPtr++;

 if (aPtr > mid) doneA = true;
 if (bPtr > last) doneB = true;

 }
 for (loop=first; loop<=last; loop++)
 a[loop] = c[loop];
}

 (if (b 1 1)
 (s (n 1 1)
 (n 1 1)
)
 (if (b 1 1)
 (s (n 1 1)
 (n 1 1)
)
 (s (n 1 1)
 (n 1 1)
)
)
)
)
 (n 1 1)
 (if (b 1 1)
 (n 1 1)
)
 (if (b 1 1)
 (n 1 1)
)
 (n 1 1)
) // close do
(n 1 1) // loop = first
(do (b 1 1)
 (s (n 1 1)
 (n 1 1) // loop++
)
)

) // close s

The average structural complexity c = 2.3.
The program length l = 30.
Overall complexity e = 69.

7th Program
void quickSort (apvector<int> &list, int first, int last){
 int g = first, h = last;
 int midIndex, dividingValue;
 midIndex = (first + last) / 2;
 dividingValue = list[midIndex];
 do {
 while (list[g] < dividingValue) g++;
 while (list[h] > dividingValue) h--;
 if (g <= h) {
 swap(list[g], list[h]);
 g++;
 h--;
 }
 } while (g < h);
 if (h > first) quickSort (list,first,h);
 if (g < last) quickSort (list,g,last);
}

(s (n 1 1)
(n 1 1)
(n 1 1)
(n 1 1)
(do (b 1 1)
 (s (do (b 1 1)
 (n 1 1)
)
 (do (b 1 1)
 (n 1 1)
)
 (if (b 1 1)
 (s (n 1 1)
 (n 1 1)
 (n 1 1)
)
) // close if
) // close s
) // close do

) // close s

Software Analyses

107

The average structural complexity c = 1.93.
The program length l = 17.
Overall complexity e = 32.8075.

8thProgram
void mergeSort(apvector<int> &list, int first, int last) {
 int mid;
 if (first == last)
 last++;
 else
 if (1 == last - first) {
 if (list[first] > list[last])
 swap (list[first], list[last]);
 }
 else {
 mid = (first+last) / 2;
 mergeSort (list, first, mid);
 mergeSort (list, mid+1, last);
 merge (list, first, mid, last);
 }
}

(if (b 1 1)
 (n 1 1)
 (if (b 1 1)
 (if (b 1 1)
 (n 1 1)
)
 (s (n 1 1)
 (n 1 1)
 (n 1 1)
 (n 1 1)
) // close if
) // close if
)// close if

The average structural complexity c = 1.79.
The program length l = 9.
Overall complexity e = 16.12.

9th Program
void insertionSort (apvector<int> &list) {
 int pos;
 for(int i=1; i<list.length(); ++i) {
 pos = i;
 while((pos>0) && (list[pos-1]>list[pos])) {
 swap(list[pos-1], list[pos]);
 pos--;
 }
 }
}

(s (n 1 1) // i=1
(do (b 2 1) // function call
 (s (n 1 1)
 (do (b 2 1)
 (s (n 1 1)
 (n 1 1)
)
)
 (n 1 1) // ++i
) // close s
) // close do

) // close s

The average structural complexity c = 1.76.
The program length l = 9.
Overall complexity e = 15.83.

10th Program
void screenOutput (const apvector<int> &nums) {
 cout << setiosflags(ios :: right);
 for(int x=0; x<nums.length(); ++x) {
 if(x%12 == 0)
 cout << endl;
 cout << setw(6) << nums[x] << " ";
 }

(s (n 1 1)
(n 1 1) // x=0
(do (b 2 1) // function call
 (s (if (b 2 1) // length = 2
 // 1 from x%12
 // 1 from x%12 == 0
 (n 1 1)

Software Analyses

108

}) // close if
 (n 3 1) // display 3 times
 (n 1 1) // ++x
) // close s
) // close do

) // close s

The average structural complexity c = 1.8035.
The program length l = 11.
Overall complexity e = 19.8385.

Some of the last five programs are procedures which implement different kinds of
sorting (quick sort, insertion, sort, merge sort). We have to mention that in the last five
programs we did not take into consideration the variables declarations when calculating the
complexity. Also when we transformed “for” structure in “do” structure we have followed the
rule:

for (i=0; i<n; i++) equivalent with (n 1 1) // i = 0
 (do (b 1 1)

 ….
 (n 1 1) // i++

) // close do

We have obtained results which are intuitively correct, that is we have obtained

higher values for average structural complexity and total complexity for the programs which
“look” more complex than the others, not only in terms of length of program but also in
terms of the contained structures.

References

1. Bache R. Graph Theory Models of Software, PhD thesis, South Bank University, London, 1990.
2. Fenton N.E. and Pfleeger S.L. Software Metrics - A Rigorous & Practical Approach,

International Thomson Computer Press, London 1997 (Second edition)
3. Gill G. K. and Kemerer C.F. Cyclomatic Complexity Density and Software Maintenance, IEEE

Transanctions on Software Engineering, SE-17: 1284-1288, 1991
4. IEEE – IEEE Standard 1061-1992 Standard for a Software Quality Metrics Methodology, New

York: Institute of Electrical and Electronics Engineers, 1992
5. McCabe T. A Software Complexity Measure, IEEE Transactions on Software Engineering SE-2(4):

308-320, 1976
6. Törn A., Andersson T. and Enholm K. A Complexity Metrics Model For Software, South African

Computer Journal 24, November 1999, 40-48
7. Woodward M.R., Hennell M.A. and Hedley D. A measure of control flow complexity in

program text, IEEE Transactions on Software Engineering, SE-5(1): 45-50, 1979

1 Adrian COSTEA hold a PhD from Turku Centre for Computer Science
Research interests:
Data Mining Techniques for Decision Support
Financial Benchmarking
Economic/Financial Performance Classification Models
Economic/Financial/Process Variable Predictions
Further interests:
Software reliability models

