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Abstract 
The study proposes to consider factorial design at three levels and identify all significant factors 
based on its inherent strength. The methodology considers full, fractional, and reduced factori-
al designs with three factors each at three levels, to examine the effectiveness of factors in 
these models through simulation and employing real data. By identifying and quantifying the 
Bayes factors through simulated datasets, the true strength of the main/interaction effects in 
these three designs were discovered. Finally, the study concludes that reduced factorial design 
produces better results than traditional one-third fractional factorial designs when there are no 
other constraints to adding more factors to the model for analysis. 
 
Keywords: 3 factorial design;  Zellner’s g prior; Jeffreys-Zellner-Siow prior; Hyper- g priors; 
strength of factors 

 
Introduction  

 
Factorial designs are being widely used in experiments involving several factors and 

where it is necessary to study the impact of the factors or combination of factors on a pro-
cess. The main goal is to identify the significant factors from a set of main effects and inter-
actions. It may be noted that as the number of factors increases the total number of combi-
nations becomes unwieldy. The present research considered the factorial design with p fac-
tors, each at three levels such as “low”, “intermediate” and “high” levels of a factor. The 
factorial designs at three levels have been well exploited and analyzed considering all fac-
tors, confounded completely and partially and lastly as fractional factorials.Xu et al. (2009) 
discussed  developments in non-regular fractional factorial designs, particularly optimality 
criteria, projection properties, resolutions, and aberration criteria. Baba et al. (2013) pro-
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posed the usefulness of the empirical Bayesian approach to the saturated factorial designs 
and observed predictions and inferences for the parameters. Espinosa et al. (2016) proposed 
a new approach to screen for active factorial effects from replicated factorial design using 
the potential outcomes framework and based on sequential posterior predictive model 
checks. Rouder et al. (2017) presented the Bayes Factor approach to multi-way ANOVA with 
hierarchical models for fixed, random effects, with-subjects, between-subjects, and mixed 
designs.  Schwaferts and Augustin (2018) applied Bayes Factors to get optimal decisions in a 
study on the framework of hypothesis-based Bayesian decision theory with robust loss func-
tion and step-by-step guidelines. Khaw et al. (2019) identified the best extraction condition 
of factors from the application of the six-factor fractional factorial design. Lakens et al. 
(2020) have provided comprehensive explanations of the calculation and interpretation of 
Bayes Factors for several tests. In educational research, the Bayesian analysis for treatment 
and control groups was discussed through the factorial designs by Kessler et al. (2020). 
Sokac et al. (2021) addressed the limitations of optimization and mathematical model for 
improving composting processes.  

Heck, et al. (2021) outlined a thorough knowledge of Bayesian variable selection, 
Bayesian evaluation of cognitive models, and opportunities for Bayes Factor applications. 
Gardini et al. (2021) gave an idea on the log-transformation of a response variable by ap-
plying the Bayesian analysis of variance mixed models to examples and simulation datasets. 
Egburonu et al. (2021) discussed a balanced two-way analysis of variance of three cases 
such as the factors are fixed, random, and mixed by applying the Bayesian techniques. 
Gromping (2021) developed an algorithm for a two-level regular fractional factorial design 
with two-factor interactions. Ming-Chung Chang (2022) used the Bayesian approach for the 
minimum aberration criteria for many applications. Vijayaragunathan and Srinivasan (2022) 
discussed the comparison of Bayes Factors in both 2  and 2  full, fractional and reduced fac-
torial designs.  

The present study proposed considers a factorial design that includes all significant 
factors based on its strength by analysing full, fractional, and reduced factorial designs with 
three factors each at three levels adopting Bayesian approach  Under Bayesian approach it is 
important to identify suitable priors to examine  the strength/effectiveness of factors in these 
models. Thus, by identifying and quantifying the Bayes Factors through simulated datasets, 
the true weightage of the main/interaction effects in these three designs were discovered. 
Finally, the study concludes that the reduced factorial design produces better results than 
traditional one-third fractional factorial designs when there are no serious constraints in 
terms of time and resources for adding more factors to the model. The following section 
provides an algorithm for studying the strength of factors and then an illustration is provided 
for the same. The reliability of the results are studied through a simulation study and conclu-
sions are provided at the end. 

 

2. Algorithm for finding the strength of factors in 33 factorial design 
 
In the 33 full, fractional, and reduced factorial designs, the following steps are to be 

followed to analyze, evaluate and identify the strength of factors. 
Step 1: Consider the appropriate data for a 33 full factorial design and analyze the 

same to identify the significant main and interaction effects. 
Step 2: Construct a fractional factorial design based on suitable confounding factors 

and then check its significance in the model.  
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Step 3: Generate a reduced factorial design according to the significant factors from 
the 33  full factorial design. 

Step 4: Compute the Bayes Factor values for 3  full, fractional, and reduced factorial 
designs to compare the strength of factors while incorporating them into these designs.  

Step 5: To extend the findings, the study employed  simulated datasets to uncover 
the strength of factors through a variety of  Bayesian priors and draw comprehensive and 
useful conclusions based on the strength of the factors. 

 
The present research considers the basic 3  factorial experimental design to find the 

most significant factors in full factorial, fractional and reduced factorial designs. When the 
experimental run is large, usually a fractional factorial design is preferred which incorporates 
all major elements in the design. Let each factor be tested at three levels, with 𝑎 , 𝑎 , and 
𝑎 , is the three levels of 𝑎; 𝑏 , 𝑏 , 𝑏  being the three levels of 𝑏; and 𝑐 ,  𝑐 , 𝑐   being the 
three levels of c, and so on. 𝑎  is the total number of treatment combinations with an 𝑎  
level. 𝑎 𝑎  at the 0  level, and 𝑎 𝑎 at the first level, there are two reactions to a 
unit amount of the factor. When one looks at a graph with the levels of factor a on the x-axis 
and the responses on the y-axis, one can see that when 𝑎 𝑎  is almost equal to 𝑎
𝑎 , the responses will lie on a straight line, therefore, the linear effect of factor 

a is measured by the average of 𝑎 𝑎  and 𝑎 𝑎 . When 𝑎 𝑎   differs signifi-
cantly from 𝑎 𝑎 , the replies will follow a parabola rather than a straight line. As a re-
sult, the study uses the difference between 𝑎 𝑎  and 𝑎 𝑎  to calculate the factor's 
quadratic effect. The linear and quadratic effects of a, indicated by A  and A  respectively, 
are obtained by utilizing standard divisors to express the effects on a unit-based comparison 
as follows. 

𝐴
 

𝑎 𝑎   (1) 

𝐴
 

𝑎 2 𝑎 𝑎                   (2) 

Each treatment combination is replicated 𝑟 times. The remaining elements for linear 
and quadratic effects can be defined in the same way. Any two-factor interaction has four 
degrees of freedom, which are classified as linear  linear, linear  quadratic, quadratic  
linear, and quadratic  quadratic. The AB interaction can be divided into partitions as 

𝐴 𝐵
 

𝑎 𝑎 𝑏 𝑏                           

𝐴 𝐵
 

𝑎 2𝑎 𝑎 𝑏 𝑏         

𝐵
 

𝑎 𝑎 𝑏 2𝑏 𝑏              

𝐴 𝐵
 

𝑎 2𝑎 𝑎 𝑏 2𝑏 𝑏                         

The total yields are substituted for the treatment combinations with the provided levels 
of 𝑎 and 𝑏, and the multiplications are done as usual. Similarly, other two-factor interactions 
can be partitioned into single degrees of freedom. ABC is a three-factor interaction with 8 d.f. 
that can be partitioned into a single d.f. as illustrated below. 

𝐴 𝐵 𝐶
  

𝑎 𝑎 𝑏 𝑏 𝑐 𝑐                        

𝐴 𝐵 𝐶
  

𝑎 𝑎 𝑏 𝑏 𝑐 2𝑐 𝑐                      

𝐴 𝐵 𝐶
  

𝑎 𝑎 𝑏 2𝑏 𝑏  𝑐 𝑐      

𝐴 𝐵 𝐶
  

𝑎 𝑎 𝑏 2𝑏 𝑏 𝑐 2𝑐 𝑐                   

𝐴 𝐵 𝐶
  

𝑎 2𝑎 𝑎 𝑏 𝑏 𝑐 𝑐    

𝐴 𝐵 𝐶
  

𝑎 2𝑎 𝑎 𝑏 𝑏 𝑐 2𝑐 𝑐            
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𝐴 𝐵 𝐶
  

𝑎 2𝑎 𝑎 𝑏 2𝑏 𝑏 𝑐 𝑐       

𝐴 𝐵 𝐶
  

𝑎 2𝑎 𝑎 𝑏 2𝑏 𝑏 𝑐 2𝑐 𝑐           

Where, the yields will now be substituted for the treatment combinations with the in-
dicated levels of 𝑎, 𝑏, 𝑐, and multiplications will be repeated as before. In a similar idea, high-
er-level interaction can be defined. The sum of squares of these effects and interactions was 
computed using standard principles. 

Assume that in a factorial experiment, three components A, B, and C are being in-
vestigated, each with three levels. In the 33 factorial designs, there are 27 treatment combi-
nations. Each main effect has two degrees of freedom, each two-factor interaction has four 
degrees of freedom, and the three-factor interaction has eight degrees of freedom. If there 
are ′𝑛′ replicates, there are 𝑛 3 1 total degrees of freedom and 3 𝑛 1  degrees of free-
dom for error. The sum of squares can be calculated using standard factorial design meth-
ods. Furthermore, if the factors are quantitative and each has one degree of freedom, the 
main effects can be partitioned into linear and quadratic components. Two-factor interac-
tions can be decomposed into linear x linear, linear x quadratic, quadratic x linear, and 
quadratic x quadratic effects. Finally, the ABC three-factor interaction can be divided into 
eight single degrees of freedom components, such as linear x linear, linear x quadratic, 
quadratic x quadratic, and so on. Three-factor interaction isn't very useful in general. How-
ever one can separate the 𝐼 and 𝐽 components from the three-factor interaction in order to 
get two-factor interactions. 𝐴𝐵, 𝐴𝐵 , 𝐴𝐶, 𝐴𝐶 , 𝐵𝐶, and 𝐵𝐶  are the two-factor interactions, and 
each component has two degrees of freedom. These components have no physical meaning. 
The 𝑊, 𝑋, 𝑌, and 𝑍 components of the three-factor interaction 𝐴𝐵𝐶 are the four orthogonal 
two-degrees of freedom components of the interaction. The 𝐴𝐵𝐶 interaction components are 
referred to as 𝐴𝐵 𝐶 , 𝐴𝐵 𝐶, 𝐴𝐵𝐶 , and 𝐴𝐵𝐶, respectively. The 𝐼, 𝐽, 𝑊, 𝑋, 𝑌, and 𝑍 compo-
nents have no practical interpretations. The design is built using the notations listed below. 

𝑊 𝐴𝐵𝐶 𝐴𝐵 𝐶 ;  𝑋 𝐴𝐵𝐶  𝐴𝐵 𝐶;  𝑌 𝐴𝐵𝐶 𝐴𝐵𝐶  𝑎𝑛𝑑 𝑍 𝐴𝐵𝐶 𝐴𝐵𝐶 
In the construction of fractional factorial design for the 3 design, one can use any of 

the 𝐴𝐵𝐶 interaction components, such as 𝐴𝐵𝐶, 𝐴𝐵 𝐶, 𝐴𝐵𝐶 , and 𝐴𝐵 𝐶 . The 3  factorial con-
founded in three blocks of nine runs each. Thus, the possible components of interaction con-
trast as given below have 12 different one-third fractions. 

 𝐿 𝑥 𝑥 𝑥 𝑢 𝑚𝑜𝑑 3  for 𝐴𝐵𝐶, 
 𝐿 𝑥 2𝑥 𝑥 𝑢 𝑚𝑜𝑑 3  for  𝐴𝐵 𝐶 
 𝐿 𝑥 𝑥 2𝑥 𝑢 𝑚𝑜𝑑 3  for  𝐴𝐵𝐶   
and  𝐿 𝑥 2𝑥 2𝑥 𝑢 𝑚𝑜𝑑 3  for 𝐴𝐵 𝐶 , 
 where 𝑢 0, 1 𝑜𝑟 2,  
If the number of significant factors in the full factorial design is more than the num-

ber of significant factors in the fractional factorial design, a reduced factorial design may be 
the better option. The purpose of this study is to create a reduced factorial design using only 
significant factors. It cannot be anticipated until the full factorial design is performed. If the 
experimenter wants that no information should be lost throughout the design and also there 
is no constraint to include all of the main and interaction factors except the non-significant 
factors then a reduced factorial design is more valuable and informative.  

This study employed five alternative priors to obtain the Bayes Factors for full, frac-
tional, and reduced factorial designs. Maruyama (2009), Wetzels et al. (2012), Wang and 
Sun (2014), and Wang et al. (2015) have all examined Bayes Factors conceptually. These 
priors are discussed by Vijayaragunathan and Srinivasan (2020, 2022) in their study of hier-
archical two-way ANOVA models and factorial designs of factors each at two levels. 



 

 
28

a). Zellner’s 𝒈 Prior 
Prior to Bayesian hypothesis testing, Zellner's priors were most widely utilized. Many 

authors have previously examined this, including George and Foster (2016), Kass and Was-
serman (1995), and others. By changing the value of g, one can evaluate two priors: (a) Unit 
Information Prior (UIP) if 𝑔 𝑛, and (b) Risk Inflation Criterion (RIC) if 𝑔 𝑘 , where 
𝑛=number of observations and 𝑘= number of predictors in the regression model. The Bayes 
Factor for the full model to the null model is 

𝐵𝐹 1 g / 1 𝑔 1 𝑅 /                         (3)       
b). Jeffreys-Zellner-Siow Prior 
In the Jeffreys-Zellner-Siow (JZS), one estimates g from the data. This prior is a mix-

ture of priors discussed by Liang et al. (2008). The following equation gives the Bayes Factor 
for the full model to the null model 

𝐵𝐹 1 𝑔 /  1 𝑔 1 𝑅 / 𝑔 /  𝑒 / 𝑑     (4) 

c). Hyper-𝒈 Prior 
A family of prior distributions on 𝑔 is known as the hyper- 𝑔 prior. The term 𝑎 range 

from 2 to 4, resulting in distinct hyper- 𝑔  prior behaviour. For simplicity, one uses only two 
values: 𝑎 3 and 𝑎 4. The equation given below is the Bayes Factor for the full model to 
the null model. 

𝐵𝐹  1 𝑔  1 𝑔 1 𝑅 𝑑𝑔                     (5) 

 

3. Illustration 
 
The present research considers the illustration from Montgomery (2019),  
“A machine is used to fill 5-gallon metal containers with soft drink syrup. The 

variable of interest is the amount of syrup loss due to frothing.  Three factors are 
thought to influence frothing: the nozzle design (A), the filling speed (B), and the oper-
ating pressure (C). Three nozzles, three filling speeds, and three pressures are chosen 
and two replicates of a 3  factorial experimental run”. 

The ANOVA output for syrup loss data is presented in Table 1 and it is observed 
that the filling speed 𝐵 and the operating pressure 𝐶 are statistically significant. The two-
factor interactions, 𝐴𝐵, 𝐴𝐶 , 𝐵𝐶, 𝐵𝐶 , and three-factor interactions 𝐴𝐵 𝐶   are also significant. 
It shows that the interaction effects are influenced by the soft drink syrup loss data even if 
the main effect, nozzle design 𝐴, is not significant in the full factorial design. 

 
Table 1.  ANOVA output for 33 full factorial design 

Source of 
Variation 

Sum Sq. Df 
Mean 
Sq. 

F value Pr(>F)  

factor(A) 994 2 497 1.165 0.327102  
factor(B) 61190 2 30595 71.735 1.57e-11 *** 
factor(C) 69105 2 34553 81.014 3.89e-12 *** 
factor(AB) 6174 2 3087 7.238 0.003042 ** 
factor(AB2) 127 2 63 0.149 0.862592  
factor(AC) 635 2 318 0.745 0.484444  
factor(AC2) 6879 2 3439 8.064 0.001795 ** 
factor(BC) 8581 2 4291 10.060 0.000543 *** 
factor(BC2) 4273 2 2136 5.009 0.014116 * 
factor(ABC) 19 2 9 0.022 0.978244  
factor(AB2C) 222 2 111 0.260 0.772962  
factor(ABC2) 584 2 292 0.685 0.512748  
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factor(AB2C2) 3804 2 1902 4.460 0.021207 * 
Residuals 11515 27 426    
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
The study proceeds to employ a 3  factorial design with three blocks of nine runs 

each. When the three-factor interaction 𝐴𝐵 𝐶  will be confounded by blocks, let 𝐿 𝑥
2 𝑥 2𝑥  the defining contrast, then the treatment combinations belonging to the principal 
block are 000, 012, 101, 202, 021, 110, 122, 211, 220.  

 Also other treatment combinations 200, 212, 001, 102, 221, 010, 022, 111, 120 and 
100, 112, 201, 002, 121, 210, 222, 011, 020 are belonging to block 2 and 3 respectively.  

 
Table 2.  ANOVA output for 33-1 fractional factorial design (𝐴𝐵 𝐶  𝑎𝑡 0  

Source of 
 Variation 

Sum Sq. Df Mean Sq. F value Pr(>F)  

factor(A) 2722 2 1361 3.091 0.095065  
factor(B) 9855 2 4928 11.192 0.003621 ** 
factor(C) 23211 2 11605 26.359 0.000173 *** 
factor(AB) 5567 2 2783 6.322 0.019279 * 
Residuals 3962 9 440    

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Table 3. ANOVA output for 3  fractional factorial design 𝐴𝐵 𝐶  𝑎𝑡 1  
Source of 
Variation 

Sum 
Sq. 

      
Df 

Mean 
Sq. 

F value Pr(>F)  

factor(A) 1519 2 760 1.120 0.367777  
factor(B) 22663 2 11332 16.708 0.000934 *** 
factor(C) 23644 2 11822 17.431 0.008030 *** 
factor(AB) 594 2 297 0.438 0.658385 *** 
Residuals 6104 9 678    
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Table 4. ANOVA output for 3  fractional factorial design 𝐴𝐵 𝐶  𝑎𝑡 2 

Source of 
Variation 

Sum 
Sq. 

    
Df 

Mean Sq. F value Pr(>F)  

factor(A) 5352 2 2676 16.62 0.00095100 *** 
factor(B) 36134 2 18067 112.22 0.00000043 *** 
factor(C) 22599 2 11299 70.18 0.00000324 *** 

   factor(AB) 4924 2 2461 15.28 0.00012770 ** 
Residuals 1449 9 161    

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
The ANOVA outputs for these one-third fractional factorial designs are shown in 

Tables 2 - 4. The main effects 𝐵 and 𝐶, and the interaction effect 𝐴𝐵 are significant in the 
fractional factorial design when the factor 𝐴𝐵 𝐶  at levels 0 and 1 (see Tables 2 and 3). But, 
three main effects and interaction 𝐴𝐵  are significant in the fractional factorial design when 
the factor 𝐴𝐵 𝐶  at level 2 (see Table 4). The main effect 𝐴 performs well when it interacts 
with another factor, a synergetic effect, in this experimentation. Moreover, all the fractional 
factorial designs do not provide the same results even if the factors are the same in the 
ANOVA output.   

Unlike the main effect, nozzle design 𝐴  significantly differs on the soft drink syrup 
only when the interaction 𝐴𝐵 𝐶  at level 2. The main effects, filling speed 𝐵 and operating 
pressure 𝐶, significantly differ in all levels of 𝐴𝐵 𝐶 . Also, the nozzle design interaction with 
different levels of filling speeds determined the loss of syrup impact in all three fractional 
factorial designs. 



 

 
30

 
Table 5. ANOVA output for 3  reduced factorial design 

Source of 
Variation 

Sum 
Sq. 

Df Mean Sq. F value Pr(>F)  

factor(A) 6008 2 3004 9.942 0.000665 *** 
factor(B) 42010 2 21005 69.520 6.13e-11 *** 
factor(C) 50480 2 25240 83.537 8.53e-12 *** 
factor(AB) 6698 4 1675 5.542 0.002459 ** 
factor (BC) 10532 4 2633 8.715 0.000151 *** 
factor(AC2) 1674 1 1674 5.540 0.026748 * 
factor(AB2C2) 2798 1 2798 9.262 0.005440 ** 
Residuals 7554 25 302    

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

In the fractional factorial design, this study considered one-third of the observations 
from the full factorial design. Since one may lose potentially significant interaction effects in 
the fractional factorial designs, instead of ignoring factors the present study incorporated all 
the significant factors in the proposed reduced factorial design. . The ANOVA output for the 
reduced factorial design is presented in Table 5 and it is observed that the main effect 𝐴 is 
highly significant in the reduced factorial design. 
 
Table 6. Bayes Factor values for 3  full, fractional, and reduced factorial designs 

 
The main effect 𝐴 is one of the highly significant factors in the reduced factorial de-

sign because the combination of other factor effects will influence the main effect 𝐴 in the 
reduced factorial design. The ANOVA table for full, fractional and reduced factorial design 
provides slight variation in the results. Therefore, as proposed the study proceeded with the 
Bayesian Approach for quantifying the results in a better way. The Bayes Factor values for 
the full factorial, 12 different one-third fractional factorial, and reduced factorial designs are 
shown in Table 6. The factors support 5 to 7 times the model in a full factorial design. One 
may use any of the ABC interaction effects for further comparison. 

The study used AB2C2 for computing the Bayes Factors for all factors from the one-
third fractional factorial design. The results revealed that data support the null model for 
some cases “Poorly” and others “Strongly”, which indicates that data does not support the 
fractional factorial design. In the fractional factorial design, priors like Zellner's g prior (UIP), 
Jeffrey-Zellner-Siow prior, and both Hyper-g priors offer more or less comparable results. 
However, the Bayes Factor values for Zellner's g prior (RIC) are nearly 3 to 6 times smaller 
than those for the other prior. Moreover, the Bayes Factors for reduced factorial design re-

Prior 

Full 
Facto-

rial 
Design 

 

One-third Fractional Factorial Design for the three-factor interaction 

Re-
duced

Factorial
Design

𝐴𝐵𝐶 𝐴𝐵 𝐶 𝐴𝐵𝐶  𝐴𝐵 𝐶   
0 1 2 0 1 2 0 1 2 0 1 2  

Zellner’s g 
prior (UIP) 

5.60 -0.34 -4.34 -1.12 -1.44 -0.18 -4.36 -0.56 0.001 -2.18 -1.57 -13.02 -10.11 4.58 

Zellner’s g 
prior (RIC) 

4.67 -5.12 -10.88 -6.54 -7.05-4.80 -17.83 -5.55 -4.42 -8.16 -7.26 -38.18 -32.08 4.04 

Jeffreys-
Zellner-
Siow 

6.80 -0.27 -2.41 -0.71 -0.88 -0.17 -2.56 -0.39 -0.06 -1.26 -0.94 -5.89 -5.36 5.17 

Hyper-g 
prior (a=3) 

7.03 0.15 -0.58 -0.03 -0.09 0.20 -0.41 0.10 0.25 -0.23 -0.12 -1.23 -1.19 5.27 

Hyper-g 
prior (a=4) 

6.83 0.22 -0.35 -0.08 -0.04 0.26 -0.07 0.18 0.29 -0.40 0.02 -0.95 -0.91 5.07 
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sults are the same as the full factorial design. In order to generalize the findings, the study 
proceeded to determine the Bayes Factor values for three different factorial design varia-
tions. In the following section, the study compared the Bayes Factor values for these designs 
for simulated data. 
 

4. Simulation Study 
 

In order to get reliable results, dataset was simulated for the respective designs. Fur-
ther, to calculate the values of the Bayes Factors for five priors, the simulation data was run 
over 10,000 iterations with an error variance of 1. The Bayes Factors were calculated for 
various datasets with error variances of 5, 25, and 50, respectively. The five prior Bayes Fac-
tors for these simulated data to the 3  full factorial, one-third fractional factorial, and re-
duced factorial designs are shown in Figures 1-5. The mean and standard deviation of Bayes 
Factor values for 3 full, fractional and reduced factorial designs were presented in Table 7. 

 
Table 7. Average (Standard Deviation) of 10000 Bayes Factor values to the simulated da-

tasets of  33 full, 33-1 fractional, and reduced factorial designs for five priors when 
the error variances are 1, 5, 25 and 50. 

Error 
Variance 

(𝝈𝒆
𝟐  

Zellner’s 
g-prior 
(UIP) 

Zellner’s 
g-prior 
(RIC) 

Jeffreys 
-Zellner 
-Siow 

Hyper-g 
prior 
(a=3) 

Hyper-g 
prior 
(a=4) 

3  full factorial design 
1 5.12 (2.13) 1.17 (2.28) 6.43 (1.69) 6.74 (1.46) 6.54 (1.41) 
5 5.07 (2.16) 1.12 (2.32) 6.39 (1.72) 6.70 (1.48) 6.51 (1.43) 
25 3.77 (3.03) 0.56 (3.24) 5.36 (2.41) 5.86 (2.03) 5.71 (1.95) 
50 1.78 (3.77) 0.15 (3.99) 3.79 (2.99) 4.63 (2.40) 4.53 (2.03) 

3  fractional factorial design (𝐴𝐵 𝐶 𝑎𝑡 0  
1 -1.11 (1.51) -6.12 (2.72) -0.64 (0.89) 0.04 (0.36) 0.13 (0.27) 
5 -1.22 (1.51) -6.35 (2.59) -0.71 (0.86) 0.01 (0.34) 0.11 (0.26) 
25 -2.95 (1.39) -9.11 (1.92) -1.67 (0.74) -0.34 (0.23) -0.17 (0.19) 
50 -4.68 (1.42) -11.28 (1.74) -2.60 (0.78) -0.61 (0.21) -0.39 (0.18) 

3  fractional factorial design (𝐴𝐵 𝐶 𝑎𝑡 1  
1 -12.47 (1.43) -36.99 (2.55) -5.81 (0.32) -1.23 (0.03) -0.95 (0.03) 
5 -12.57 (1.47) -37.19 (2.47) -5.83 (0.32) -1.23 (0.03) -0.95 (0.03) 
25 -13.02 (0.85) -39.21 (1.93) -6.13 (0.36) -1.26 (0.03) 0.09 (0.04) 
50 -15.43 (1.36) -41.28 (1.71) -6.60 (0.44) -1.30 (0.04) -1.02 (0.04) 

3  fractional factorial design (𝐴𝐵 𝐶 𝑎𝑡 2  
1 -10.04 (0.62) -31.31 (2.35) -5.35 (0.09) -1.19 (0.01) -0.91 (0.01) 
5 -10.20 (0.65) -31.92 (2.24) -5.38 (0.10) -1.19 (0.01) -0.92 (0.01) 
25 -12.31 (1.05) -36.89 (1.84) -5.76 (0.22) -1.22 (0.02) -0.95 (0.02) 
50 -14.59 (1.32) -40.24 (1.75) -6.34 (0.39) -1.28 (0.04) -0.99 (0.04) 

3  reduced factorial design 
1 4.18 (1.65) 2.01 (1.82) 4.86 (1.31) 5.03 (1.11) 4.85 (1.06) 
5 4.10 (1.73) 1.94 (1.73) 4.80 (1.37) 4.98 (1.16) 4.80 (1.10) 
25 2.53 (2.54) 0.77 (2.77) 3.58 (1.99) 4.00 (1.62) 3.88 (1.54) 
50 0.23 (3.15) -1.22 (3.8) 1.79 (2.45) 2.69 (1.83) 2.65 (1.71) 
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Figure 1. Bayes Factor values for 3 full factorial design to the different simulation datasets 
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The results of 33 full factorial design are obtained from Figure 1, it may be seen that 
in Zellner’s g (UIP) the distribution of the Bayes Factor ranges between 0 and 10, which 
means that the simulated dataset with an error variance of 1 for the 33 full factorial design 
data supports the model specified 0 to 10 times. The data support the model 0 to 5 times 
when an error variance is 5. The 33 full factorial design with error variance 25 provides 
mixed results that, out of 10000 iterations, approximately half of the iterations, the data 
supported the null model and the remaining half supported the specified model. Also, when 
the error variance is increased to 50, it provides mixed results.  

For the Zellner’s g prior (RIC) the data supports the model -5 to 7 times and -5 to 7 
times when error variances are 1 and 5. Thus, half of the iteration result supports the null 
model and the remaining iterations support the full model. When error variance is 25, the 
data mostly supports the null model and sometimes supports the full model also. When error 
variance is 50, the data support the null model -12 to 0 times.  

For the JZS the data supports the full factorial model 0 to 11 times when error vari-
ances are 1 and 5; the Bayes Factor values range between -1 and 9 when error variance is 
25, almost the data supports the full model; when error variance is 50, the Bayes Factor 
values between -5 and 5 which mean that half of the result of the iteration supports the null 
model and remaining iterations supports the full model. 

Both Hyper-g priors provide similar results such that the data supports the model 2 to 
11 times,  2 to 11 times, 1 to 9 times and 0 to 5 times when error variances are 1, 5, 25, 
and 50 respectively. Thus, the two Hyper-g priors always support the 33 full factorial model. 

The average of the Bayes Factor values for  Zellner’s g (UIP) prior are 5.12, 5.07, 
3.77, and 1.78; for  Zellner’s g (RIC) prior are 1.17, 1.12, 0.56, and 0.15; for  JZS prior are 
6.43, 6.39, 5.36, and 3.79; Hyper-g (a=3) prior are 6.74, 6.70, 5.86, and 4.63; for  Hyper-
g (a=4) prior are 6.54, 6.51, 5.71, and 4.53 for the simulated dataset of  33 full factorial 
design with error variances of 1, 5, 25 and 50 respectively which are presented in Table 7. 

The results of 33-1 fractional factorial design ( AB2C2 at 0) are obtained from Figure 
2 and it may be seen that in Zellner’s g (UIP) the distribution of the Bayes Factor for 33-1 
fractional factorial design ( AB2C2 at 0) ranges between -5 and 2, -5 and 2, -7.5 and 0, 
and -9 and 0; for Zellner’s g (RIC) prior ranges between -10 and 1, -10 and 1, -15 and -3, 
and -16 and -4;  for JZS prior ranges between -3 and 2, -3 and 2, -4 and 0, and -5 and 0; 
both Hyper-g priors have almost same ranges between -1 and 1, -1 and 1, -1 and 0.5, 
and -1.2 and 0.3 when the error variance are 1, 5, 25, and 50 respectively. 

The results of 33-1 fractional factorial design ( AB2C2 at 1) are obtained from Figure 3 
and it may be seen that in Zellner’s g (UIP) the distribution of the Bayes Factor for 33-1 frac-
tional factorial design ( AB2C2 at 1) ranges between -16 and -9, -17 and -10, -17 and -11, 
and -18 and -11; for Zellner’s g (RIC) prior ranges between -42 and -30, -45 and -30, -45 
and -32, and -45 and -35;  for JZS prior ranges between -7 and -4, -7 and -5, -7 and -5, 
and -8 and -5; both Hyper-g priors have almost same ranges between -1.3 and -1, -1.4 and 
-1.1, -1.4 and -1.2, and -1.4 and -1.2 when the error variance are 1, 5, 25, and 50 respec-
tively. 

The results of 33-1 fractional factorial design ( AB2C2 at 2) are obtained from Figure 
4 and it may be seen that in Zellner’s g (UIP) the distribution of the Bayes Factor for 33-1 
fractional factorial design (AB2C2 at 2) ranges between -12 and -9, -13 and -9, -15 and -9, 
and -18 and -10; for Zellner’s g (RIC) prior ranges between -37 and -25, -37 and -25, -42 
and -30, and -45 and -35;  for JZS prior ranges between -5.75 and -5.25, -6 and -5, -7 
and -5, and -8 and -5; for Hyper-g (a=3) prior ranges between -1.22 and -1.18, -1.23 
and -1.17, -1.3 and -1.2, and -1.4 and -1.2; for Hyper-g (a=4) prior ranges between -1 
and -0.9, -0.96 and -0.12, -1.05 and -0.9, and -1.1 and -0.9  when the error variance are 
1, 5, 25, and 50 respectively. 
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Figure 2. Bayes Factor values for 3 fractional factorial design 𝐴𝐵 𝐶  𝑎𝑡 0  to the different 

simulation datasets 
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Figure 3. Bayes Factor values for 3 fractional factorial design 𝐴𝐵 𝐶  𝑎𝑡 1  to the different 

simulation datasets 
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Figure 4. Bayes Factor values for 3 fractional factorial design 𝐴𝐵 𝐶  𝑎𝑡 2  to the different 

simulation datasets. 
 

The average of the Bayes Factor values for Zellner’s g (UIP), Zellner’s g (RIC), Jef-
freys-Zellner-Siow, Hyper-g (a=3) and Hyper-g (a=4) priors are presented in Table 7. 
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Thus, the distribution of the Bayes Factor values show that the simulated dataset almost 
“Decisively” supports all 33-1 fractional factorial designs invariably in the present study. Par-
ticularly, the Bayes Factor values for both the Hyper-g priors have less variability than the 
other prior and these priors support “Poorly” the null model. 

 
Figure 5. Bayes Factor values for 3  reduced factorial design to the different simulation datasets 
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From Figure 5, it may be seen that in Zellner’s g (UIP) the distribution of the Bayes 
Factor ranges between 0 and 9, which means that the simulated dataset with an error vari-
ance of 1 for the 33  reduced factorial design data supports the model specified 0 to 9 times. 
The data support the model 0 to 12 times when an error variance is 5; the data support the 
model -1 to 10 times when an error variance is 25; The 33 reduced factorial design with an 
error variance of 50 provides mixed results that, the data support the model -10 to 10 times. 
Out of 10000 iterations, approximately half of the iterations, the data supported the null 
model and the remaining half supported the specified model. For the Zellner’s g prior (RIC) 
the distribution of the Bayes Factor for 33 reduced factorial design ranges between -5 and 5, 
-5 and 10, -10 and 10, and -10 and 5; for JZS prior ranges between 4 and 9, 2 and 9, 0 
and 10, and -2 and 10; both Hyper-g priors have almost same ranges between 2 and 8, 3 
and 8, 0 and 10, and 0 and 10 when the error variance of 1, 5, 25, and 50 respectively. 
Thus, all priors except Zellner’s g (RIC) are provided “Decisively” to support the reduced fac-
torial model. Particularly, Zellner’s g (RIC) prior gives mixed results that more or less half of 
the iterations supported the null model and the remaining half supported the reduced facto-
rial model invariably among the different simulated datasets with various error variances. 

The average of the Bayes Factor values for  Zellner’s g (UIP) prior are 4.18, 4.10, 
2.53, and 0.23; for  Zellner’s g (RIC) prior are 2.0, 1.94, 0.77, and -1.22; for  JZS prior are 
4.86, 4.80, 3.58, and 1.79; Hyper-g (a=3) prior are 5.03, 4.98, 4.00, and 2.69; for  Hyper-
g (a=4) prior are 4.85, 4.80, 3.88, and 2.65 for the simulated dataset of  33 reduced facto-
rial design with error variances of 1, 5, 25 and 50 respectively which are presented in Table 
7. 

The Bayes Factor values of different priors for the simulated datasets obtained the 
following results. In general, among the five priors, Zellner’s g prior (RIC) produces a much 
smaller average of  Bayes Factor values against the simulated datasets as compared with all 
other priors. This is because this prior has a high value of g, which is the square of the num-
ber of predictors in the respective model. The same results are obtained by RIC prior in all 
fractional factorial designs as well as the reduced factorial design. Particularly, all the one-
third fractional factorial designs support the null model invariably. Furthermore, both the 
Hyper-g priors have a less standard deviation of the Bayes Factor values compared to all 
other priors. Finally, the Bayes Factor values for the reduced factorial design are almost close 
to the Bayes Factor values of full factorial design.  

 

5. Summary and Conclusion 
 

In this study, the investigation is basically on the use of  Bayesian measures to de-
termine the strength of the factors in the 3  factorial design. The Bayesian framework has 
been widely used in model selection, here the Bayesian principle was used to determine the 
intensity of the factors in  3  full, fractional, and reduced factorial models. Based on the clas-
sical factorial design analysis, it is found that the main effects 𝐵,  and 𝐶; the first-order inter-
action 𝐴𝐵, 𝐵𝐶, 𝐴𝐶   and 𝐵𝐶 ; the second-order interaction 𝐴𝐵 𝐶  are significant in the 3  full 
factorial design. The main effects 𝐵 and 𝐶, and the interaction 𝐴𝐵 are significant in all three 
possible one-third fractional factorial designs. But all the factors are significant in fractional 
factorial design when the factor 𝐴𝐵 𝐶  at level 2. All the factors are significant in 3  reduced 
factorial design. Furthermore, all the priors do not contribute the same Bayes Factor values 
to the respective factorial designs. Based on the Bayes Factor values, the factors supported 5 
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to 7 times the  3  full factorial design. In the simulation study, the Bayes Factor values for full 
and reduced factorial designs are positive which means that the data “Decisively” support 
the respective models. But, the Bayes Factors for fractional factorial designs are negative, 
which shows that the data does not support the fractional factorial designs. All these three 
one-third fractional factorial models do not produce similar results and also do not resemble 
the full factorial design in the results. In the proposed model, the Bayes Factor values in the 
reduced factorial design show “Strong” support for the model, the same as the full factorial 
design. Finally, it is concluded and generalized that the results based on the real-life appli-
cation and simulated dataset, that the reduced factorial design is a more appropriate model 
for the full factorial design compared to the fractional factorial designs. Hence, the reduced 
factorial design is a better alternative to the full factorial design to check the strength or in-
tensity of the factors. Furthermore, it is proposed to apply the same technique for more than 
three factors each at three levels of factorial designs, Analysis of the Covariance model, split-
plot design, asymmetrical designs etc. to find the strength/intensity of the factors in the re-
spective models in the future studies.   
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