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Abstract 
In the present paper, a two-parameter quasi Garima distribution (QGD) which includes one 

parameter exponential distribution and Garima distribution introduced by Shanker (2016 c) as 

special cases, has been proposed. Its statistical and mathematical properties including 

moments and moments based measures, hazard rate function, mean residual life function, 

stochastic ordering, mean deviations, Bonferroni and Lorenz curves, order statistics, Renyi 

entropy measure and stress-strength reliability have also been discussed. The method of 

moments and the method of maximum likelihood estimation have been discussed for 

estimating the parameters of QGD. Finally, the goodness of fit of the QGD has been discussed 

with a real lifetime dataset and the fit is quite satisfactory over one parameter and two-

parameter lifetime distributions. 

 

Keywords: Garima distribution; Moments; Reliability Properties; Stochastic ordering; Mean 

deviations; Stress-strength reliability; Estimation of parameters; goodness of fit 

 

1. Introduction 
 

Shanker (2016 c) has introduced a one parameter lifetime distribution named 

Garima distribution for modeling lifetime data from behavioral science having probability 

density function (pdf) and cumulative distribution function (cdf)  
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Shanker (2016 c) has shown that it gives better fit than one parameter exponential 

distribution,  Lindley  distribution introduced by Lindley (1958) and Shanker, Akash, Ara-

dhana and Sujatha distributions introduced by Shanker ( 2015 a, 2015 b, 2016 a, 2016 b). 

This distribution is a convex combination of exponential    and gamma  2, distributions 

with their mixing proportion
1

2








.  

The first four moments about origin of Garima distribution obtained by Shanker (2016 c) are 

given as 
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The central moments of Garima distribution obtained by Shanker (2016 c) are  
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Shanker (2016 c) studied its important properties including coefficient of variation, 

skewness, kurtosis, Index of dispersion, hazard rate function, mean residual life function, 

stochastic ordering, mean deviations, order statistics, Bonferroni and Lorenz curves, Renyi 

entropy measure, and stress-strength reliability. Shanker (2016 c) has also discussed the 

estimation of parameter using both the method of moments and the method of maximum 

likelihood estimation and the application of the distribution to model behavioral science 

data.  The discrete Poisson – Garima distribution, a Poisson mixture of Garima distribution 

has also been studied by Shanker (2017). 

In this paper, a two - parameter quasi Garima distribution (QGD), of which one pa-

rameter exponential distribution and Garima distribution introduced by Shanker (2016 c) are 

particular cases, has been proposed. Its raw moments and central moments have been ob-

tained and coefficients of variation, skewness, kurtosis and index of dispersion have been 

discussed. Some of its important mathematical and statistical properties including hazard 

rate function, mean residual life function, stochastic ordering, mean deviations, Bonferroni 

and Lorenz curves, order statistics, Renyi entropy measure and stress-strength reliability have 

also been discussed. The estimation of the parameters has been discussed using both the 

method of moments and the maximum likelihood estimation. The goodness of fit of QGD 

has been illustrated with a real lifetime dataset and the fit has been compared with well 

known one parameter and two-parameter lifetime distributions. 

 
2. A quasi Garima distribution 
 

A two - parameter quasi Garima distribution (QGD) having parameters   and   

is defined by its pdf 
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                
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                      (2.1) 

It can be easily verified that (2.1) reduces to the exponential distribution and Gari-

ma distribution at 0   and    respectively. It can be easily verified that QGD is a 

convex combination of exponential    and gamma  2, distributions. We have 
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The corresponding cdf of QGD (2.1) can be obtained as 

                2 2
   0; , 1 1 , 0; , 0xx
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                         (2.3) 

The nature and behavior of the pdf and the cdf of QGD for varying values of the 

parameters and   have been explained graphically and presented in figures 1 and 2, 

respectively. From fig. 1, it is obvious that when    is fixed and   is changing, there is a 

slight difference in the shapes of the pdf of QGD. Further, when    is fixed and   is chang-

ing, there is a remarkable difference in the shapes of the pdf of QGD. This means that the 

parameter   is playing a dominant role in the shape of the pdf of QGD. The same fact can 

be observed from the shapes of the cdf of QGD in fig. 2.  

  

 
 



 
Quantitative Methods Inquires 

 

 
30 

  

  
Figure 1. Graphs of the pdf of QGD for varying values of parameters   and   
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Figure 2. Graphs of the cdf of QGD for varying values of parameters   and   

 

3. Statistical constants 
 

Using the convex combination representation (2.2), the r th moment about origin 

of QGD (2.1) can be obtained as 
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Thus, the first four moments about origin of QGD are given by 
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Using relationship between central moments and moments about origin, the cen-

tral moments of QGD  are thus obtained as                                          
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The coefficient of variation  .C V , coefficient of skewness  1 , coefficient of kur-

tosis  2 and index of dispersion    of QGD are obtained as 
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Graphs of C.V,  1 , 2 and   of QGD for varying values of the parameters    

and   have been presented in figure 3.The C.V is monotonically decreasing for increasing 

values of the parameters   and   but for increasing value of the parameter  , the C.V 

shifts upward. The nature of coefficient of skewness (C.S) is also similar to the nature of C.V.  

The coefficient of kurtosis (C.K) is also monotonically decreasing for increasing values of the 

parameters   and   but for 0.5   and, 2   , the C.K become constant. QGD is over-

dispersed ( )2m s< , equi-dispersed ( )2m s=  and under-dispersed ( )2m s>  for 

( )1, 0q a< ³ , ( )1, 0q a= ³  and ( )1, 0q a> ³  respectively, which is obvious from the 

graphs of index of dispersion (I.D) in figure 3.  
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Figure 3. Graphs of C.V, 1 , 2 and   of QGD for varying values of  parameters    and   

 

4. Reliability properties 

 

Suppose X is a continuous random variable with pdf  f x and cdf  F x . The 

hazard rate function (also known as the failure rate function)
 

 h x  and the mean residual 

life function  m x of X are respectively defined as  
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Thus corresponding  h x and  m x of QGD are thus obtained as  
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 It can be easily verified that    
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The nature and behavior of   h x  and  m x  of QGD for varying values of pa-

rameters   and   have been shown graphically in figures 4 and 5. For fixed values of a  
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and increasing values of q , the  h x  is shifting upward with very minor decrease /increase , 

whereas for fixed  q  and increasing a ,  h x  is monotonically increasing.  

The graphs of  m x  are monotonically increasing for increasing values of  q  and a , which 

is obvious from fig. 4.  

  

  

Figure 3. Graphs of  h x  of QGD for varying values of parameters   and   

  

  

Figure 4. Graphs of  m x  of QGD for varying values of parameters   and   
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5. Stochastic ordering 
 

Stochastic ordering of positive continuous random variables is an important tool for 

judging their comparative behavior. A random variable X is said to be smaller than a ran-

dom variable Y in the  

(i) stochastic order  stX Y if    X YF x F x for all x  

(ii) hazard rate order  hrX Y if    X Yh x h x  for all x  

(iii) mean residual life order  mrlX Y if    X Ym x m x for all x  

(iv) likelihood ratio order  lrX Y if 
 

 
X

Y

f x

f x
 decreases in x . 

 

The following results due to Shaked and Shanthikumar (1994) are well known for 

establishing stochastic ordering of distributions 

                                   
lr hr mrlX Y X Y X Y                                                 

                                                       
stX Y
  

The QGD is ordered with respect to the strongest ‘likelihood ratio ordering’ as 

shown in the following theorem: 

 

Theorem: Let X   QGD  1 1,   and Y   QGD  2 2,  . If
1 2 1 2and      (or 

1 2 1 2and     ), then 
lrX Y and hence hrX Y , mrlX Y and

stX Y . 

Proof: We have  
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  This gives       
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Thus if 
1 2 1 2and      or 

1 2 1 2and     ,
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ln 0X
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 . This means 

that 
lrX Y and hence hrX Y , mrlX Y and

stX Y . 

 

6. Mean deviations  

The amount of scatter in a population is measured to some extent by the totality of 

deviations usually from mean and median. These are known as the mean deviation about 

the mean and the mean deviation about the median defined by 
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using the following simplified relationships 
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Using pdf of QGD (2.1) and expression for the mean of QGD, we get 
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Using expressions from (6.1), (6.2), (6.3), and (6.4), the mean deviation about mean,  1 X  

and the mean deviation about median,  2 X  of QGD are finally obtained as 
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7. Bonferroni and Lorenz curves 

 

The Bonferroni and Lorenz curves ( Bonferroni (1930)) and Bonferroni and Gini in-

dices have applications not only in economics to study income and poverty, but also in other 

fields like reliability, demography, insurance and medicine. The Bonferroni and Lorenz 

curves are defined as 
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respectively or equivalently  
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                  and       1
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    respectively, where  E X   and  1q F p . 

 The Bonferroni and Gini indices are thus defined as 
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                                and  
1

0

1 2G L p dp                                                                   (7.6) 

respectively. 

Using pdf of QGD  (2.1), we get  

      
    

 

2 2 2 2

2 2

2 2
; ,

q

q

q q e
x f x dx

       
 

   

      


 
            (7.7)                    

            

Now using equation (7.7) in (7.1) and (7.2), we get  
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 and 
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  Now using equations (7.8) and (7.9) in (7.5) and (7.6), the Bonferroni and Gini indices of 

QGD are thus obtained as 
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8. Order statistics and Renyi entropy measure 

 

8.1. Distribution of Order Statistics 

Let 
1 2, ,..., nX X X  be a random sample of size n  from QGD (2.1). Let 

     1 2
...

n
X X X   denote the corresponding order statistics. The pdf and the cdf    of the 

k th order statistic, say  k
Y X are given by 
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    respectively, for 1,2,3,...,k n . 

 

Thus, the pdf and the cdf of k th order statistic of QGD are thus obtained as 
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8.2. Renyi Entropy Measure 

An entropy of a random variable X is a measure of variation of uncertainty. A 

popular entropy measure is Renyi entropy (1961). If X is a continuous random variable hav-

ing pdf  .f , then Renyi entropy is defined as 
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log

1
RT f x dx


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where 0 and 1   . 

Thus, the Renyi entropy of QGD  can be obtained as 
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9. Stress-strength reliability 

  

The stress- strength reliability describes the life of a component which has random 

strength X that is subjected to a random stress Y . When the stress applied to it exceeds the 

strength, the component fails instantly and the component will function satisfactorily till 
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X Y . Therefore,  R P Y X  is a measure of component reliability and in statistical 

literature it is known as stress-strength parameter. It has wide applications in almost all are-

as of knowledge especially in engineering such as structures, deterioration of rocket motors, 

static fatigue of ceramic components, aging of concrete pressure vessels etc. 

Let X and Y be independent strength and stress random variables having QGD 

(2.1) with parameter  1 1,   and  2 2,   respectively. Then the stress-strength reliability 

R of QGD (2.1) can be  obtained as 
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It can be easily verified that at 1 1   and 
2 2  , the above expression reduces to R of 

Garima distribution. 

 

10. Estimation of parameters 

 

10.1. Method of Moment Estimates (MOME) 

Since QGD have two parameters to be estimated, the first two moments about 

origin are required to get method of moment estimates. Equating the sample mean to the 

corresponding population mean, we get 
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Again equating the second sample moment to corresponding second population 

moment, we get  
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This gives 
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Using equations (9.1.1) and (9.1.2), we get a quadratic equation in   as 

  



 
Quantitative Methods Inquires 

 

 
41 
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This gives the MOME estimate  of   as 
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Substituting the value of  in equation (9.1.1) , the MOME   of  is given by 
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10.2. Maximum Likelihood Estimates (MLE) 

Let  1 2, , ... , nx x x  be a random sample of size n  from QGD (2.1)). The likelihood 

function, L of QGD is given by 
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The natural log likelihood function is thus obtained as 
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The maximum likelihood estimates (MLE)  ˆ ˆ,   of  ,    are then the solutions 

of the following non-linear equations 

                
 

2
1

2 1ln 2 1
0

1

n

i i

nL n
n x

x



      


    

    
                                                 

                
2

1

ln
0

1

n
i

i i

xL n

x     

 
  

    
                                                                    

where x is the sample mean. 

These two natural log likelihood equations do not seem to be solved directly be-

cause they are not in closed forms. However, the Fisher’s scoring method can be applied to 

solve these equations. For, we have 
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The solution of following equations gives  MLE’s  ˆ ˆ,   of  ,   of QGD 
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where 0 and 
0 are the initial values of   and   as given by the MOME of QGD. These 

equations are solved iteratively till sufficiently close values of ̂  and ̂  are obtained.  

 

11. Data analysis 

 

In this section, the goodness of fit of QGD has been discussed with a real lifetime 

dataset from engineering and the fit has been compared with one parameter and two-

parameter lifetime distributions. The following dataset represents the failure times (in 

minutes) for a sample of 15 electronic components in an accelerated life test, Lawless (2003) 

 

1.4 5.1 6.3 10.8 12.1 18.5 19.7 22.2 23.0 30.6 37.3 46.3 

 53.9 59.8 66.2 

 

In order to compare the considered distributions, values of 2ln L , AIC(Akaike In-

formation Criterion)  and  K-S Statistic ( Kolmogorov-Smirnov Statistic) and p-value for the 

dataset have been computed and presented in table 2.  The AIC and K-S Statistic are defined 

as follow:  

2ln 2AIC L k    and    0- Sup n
x

K S F x F x  , where k number of parameters, 

n   sample size,  nF x is the empirical distribution function and  0F x  is the theoretical 

cumulative distribution function.. The best distribution corresponds to the lower values of

2ln L , AIC, K-S statistic and higher p-value.  

 

The pdf and the cdf of the fitted distributions have been given in table 1. Recall that 

the quasi Shanker distribution (QSD) has been introduced by Shanker & Shukla (2017) and 

the exponentiated exponential distribution (EED) has been introduced by Gupta & Kundu 

(1999). The Lindley distribution has been introduced by Lindley (1958) and its detailed study 

has been done by Ghitany et al (2008).  

 

Table 1. The pdf and the cdf of the fitted distributions 

Models p.d.f. c.d.f. 

QSD 

 

 

3

3

2

; ,
2

x

f x

x x e 


 

  

  

 
  

  

  

  
 

2 2

3

2
; , 1 1

2

x

x

x
F x e 



  
 

  



   
  

        
 
 
 

 

Weibull 
  1; , xf x x e

         ; , 1 xF x e
     
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Gamma 

 
 

1; , xf x x e


 
 



 


  
 

 

,
; , 1

x
F x

 
 




 


 

Lognormal 

 

2
1 log

21
; ,

2

x

f x e
x



 


 
  

    
log

; ,
x

F x


  


 
  

 
 

EED 
   

1

; , 1 x xf x e e


   


       ; , 1 xF x e


     

Lindley 

   
2

; 1
1

xf x x e 




 


  
1

; 1
1

xx
F x e  




  
    

 

Exponential  ; xf x e      ; 1 xF x e     

 

Table 2. MLE’s, 2ln L , Standard Error (S.E), AIC, K-S Statistics and p-value of the fitted 

distributions of dataset. 
Distributions ML Estimates S.E 2ln L  AIC K-S  p-value 

QGD ˆ 0.06225   
0.01721 128.21 132.21 0.095 0.997 

ˆ 0.16577   0.32075 

QSD ˆ 0.07389   
0.04131 129.37 133.37 0.121 0.961 

ˆ 0.00147   0.04401 

Gamma ˆ 0.05236   
0.02067 128.37 132.37 0.102 0.992 

ˆ 1.44219   0.47771 

Weibull ˆ 0.01190   
0.01124 128.04 132.04 0.098 0.995 

ˆ 1.30586   0.24925 

Lognormal ˆ 2.93059   
0.26472 131.23 135.23 0.161 0.951 

ˆ 1.02527   0.18718 

EED ˆ 0.04529   
0.01372 128.47 132.47 0.108 0.986 

ˆ 1.44347   0.51301 

Garima ˆ 0.05462   
0.01227 128.52 130.52 0.123 0.954 

Lindley ˆ 0.07022   
0.01283 128.81 130.81 0.110 0.983 

Exponential ˆ 0.03631   
0.00937 129.47 131.47 0.156 0.807 

 

It can be easily seen from table 2 that the QGD gives better fit than one parameter 

exponential, Lindley and Garima distributions and two-parameter QSD, Gamma, Weibull 

lognormal and EED and hence it can be considered as an important distribution for model-

ing lifetime dataset over these distributions. 

 

12. Concluding remarks 

 

A two-parameter quasi Garima distribution (QGD), of which one parameter expo-

nential distribution and Garima  distribution introduced by Shanker (2016 c) are a particular 

cases, has been suggested and investigated. Its mathematical properties including moments, 

coefficient of variation, skewness, kurtosis, index of dispersion, hazard rate function, mean 

residual life function, stochastic ordering, mean deviations, Bonferroni and Lorenz curves, 

order statistics, Renyi entropy measure and stress-strength reliability have been discussed. 
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For estimating its parameters the method of moments and the method of maximum likeli-

hood estimation have been discussed. Finally, a numerical example of real lifetime dataset 

has been presented to test the goodness of fit of QGD over one parameter exponential, 

Lindley and Garima distributions and two-parameter QSD, Gamma, Weibull lognormal and 

EED and the fit by QGD has been found to be quite satisfactory. Therefore, QGD can be 

recommended as an important two-parameter lifetime distribution for modeling lifetime 

data over these distributions.  
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