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Abstract 

A Poisson-Weighted Akash distribution which includes Poisson-Akash distribution has been 

proposed. Its moments and moments based statistical constants have been derived and 

studied. Maximum likelihood estimation has been discussed for estimating the parameters of 

the distribution. Finally, applications of the proposed distribution have been explained through 

two count datasets and the goodness of fit has been compared with other discrete 

distributions. 
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1. Introduction 

 

Shanker (2017) introduced the discrete Poisson- Akash distribution (PAD) to model 

count data defined by its probability mass function (pmf) 
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 (1.1) 

Moments and moments based measures, statistical properties; estimation of pa-

rameter using both the method of moment and the method of maximum likelihood and ap-

plications of PAD has been discussed by Shanker (2017). The PAD arises from the Poisson 

distribution when its parameter  follows Akash distribution introduced by Shanker (2015) 

defined by its probability density function (pdf) 
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The pdf (1.2) is a convex combination of exponential   and gamma  3, distri-

butions. Shanker (2015) discussed statistical properties including moments based coeffi-

cients, hazard rate function, mean residual life function, mean deviations, stochastic order-

ing, Renyi entropy measure, order statistics, Bonferroni and Lorenz curves, stress- strength 

reliability, along with estimation of parameter and applications of Akash distribution to mod-

el lifetime data from biomedical science and engineering.  

The first four moments about origin and the variance of PAD (1.1) obtained by 

Shanker (2017) are given by  
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Sankaran (1970) proposed the Poisson-Lindley distribution (PLD) to model count 

data defined by its pmf 
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Shanker and Hagos (2015) proposed a simple method of finding moments of PLD 

and discussed the applications of PLD to model count data from biological sciences. The PLD 

arises from the Poisson distribution when its parameter  follows Lindley (1958) distribution 

defined by its probability density function (pdf) 
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It can be easily verified that the pdf (1.4) is a convex combination of exponential 

  and gamma  2, distributions. Ghitany et al (2008) discussed statistical properties 

including moments based coefficients, hazard rate function, mean residual life function, 

mean deviations, stochastic ordering, Renyi entropy measure, order statistics, Bonferroni 

and Lorenz curves, stress- strength reliability, along with estimation of parameter and ap-

plication of Lindley distribution to model waiting time data in a bank. Shanker et al (2015) 

have detailed study on modeling of various lifetime data from engineering and biomedical 

sciences using exponential and Lindley distribution and observed that there are many life-

time data where exponential distribution gives much better fit than Lindley distribution. 
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Ghitany et al (2011) introduced a two-parameter weighted Lindley distribution 

(WLD) having parameters    and   and defined by its pdf  
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where   1

0

; 0ye y dy 


     is the complete gamma function. Its structural properties 

including moments, hazard rate function, mean residual life function, estimation of parame-

ters and applications for modeling survival time data has been discussed by Ghitany et al 

(2011). The corresponding cumulative distribution function (cdf) of WLD (1.5) is given by 
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where  
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is the upper incomplete gamma function.  It can be easily shown that at 1  , WLD (1.5) 

reduces to Lindley (1958) distribution (1.4). Shanker et al (2016) discussed various moments 

based properties including coefficient of variation, coefficient of skewness, coefficient of kur-

tosis and index of dispersion of weighted Lindley distribution and its applications to model 

lifetime data from biomedical sciences and engineering. Shanker et al (2017) have proposed 

a three-parameter weighted Lindley distribution (TPWLD) which includes a two-parameter 

weighted Lindley distribution and one parameter Lindley distribution as particular cases and 

discussed its various structural properties, estimation of parameters and applications for mod-

eling lifetime data from engineering and biomedical sciences. 

Assuming that the parameter  of the Poisson distribution follows WLD (1.5), El-

Monsef and Sohsah (2014) proposed Poisson- weighted Lindley distribution (P-WLD) defined 

by its pmf  
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It can be easily verified that PLD (1.3) is a particular case of P-WLD for 1  . 

Shanker and Shukla (2016) proposed a two-parameter weighted Akash distribu-

tion (WAD) having parameters    and   and defined by its pdf  
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Its structural properties including moments, hazard rate function, mean residual life 

function, estimation of parameters and applications for modeling survival time data has 

been discussed by Shanker and Shukla (2016). It can be easily shown that at 1  , WAD 

(1.9) reduces to Akash distribution (1.2).  

The main purpose of this paper is to introduce a two-parameter Poisson-Weighted 

Akash distribution, a Poisson mixture of two-parameter weighted Akash distribution pro-

posed by Shanker and Shukla (2016). Its moments based measures including coefficients of 

variation, skewness, kurtosis and index of dispersion have been derived and their natures 
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have been discussed graphically. The estimation of parameters has been discussed using the 

method of maximum likelihood. Applications and goodness of fit of the distribution has also 

been discussed through two examples of observed real count datasets and the fit has been 

compared with other discrete distributions.  

 

2. The Poisson-weighted Akash distribution 

 

Assuming that the parameter  of the Poisson distribution follows WAD (1.9), the Poisson 

mixture of WAD can be obtained as 
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We would call this pmf the Poisson - Weighted Akash distribution (P-WAD). It can 

be easily verified that PAD (1.1) is a particular case of P-WAD for 1  . The natures of P-

WAD for varying values of the parameters and   have been explained graphically in fig-

ure 1. It is observed that pmf is decreasing as increased value of   whereas pmf is decreas-

ing as increased value of  . 
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Figure 1. Probability mass function plot of P-WAD for varying values of parameters and   

 

3. Moments, skewness, kurtosis and index of dispersion 

 

Using (2.1), the r th factorial moment about origin of the P-WAD (2.2) can be ob-

tained as 
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, we get 
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Taking 1,2,3, and 4r  in (3.1), the first four factorial moments about origin of P-WAD (2.2) 

can be obtained  
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Now using the relationship between factorial moments about origin and the moments about 

origin, the first four moments about origin of P-WAD (2.2) can be obtained as 
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 
 

The coefficient of variation  .C V , coefficient of Skewness  1 , coefficient of Kurtosis  2

and index of dispersion     of the P-WAD (2.2) are thus obtained as  

     

 

 

5 4 2 3 2 2 4 3 2

4 3 2

2 2
1

2 2 1 2 4 3 4 5 2

4 5 2
.

3 2
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   

    
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   

8 7 2 6 2 5 4 3 2 4
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3
1 3 2

5 4 2 3 2 2
2

3 3 5 4 9 27 18 3 10 17 34 24

9 42 57 24 5 15 31 32 12
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2 2 1 2 4 3

            

           

          


        


            
 
 
          
 
            

        

 

3 2
4 3 2

4 3 2

4 5 2

4 5 2

    

   

     
 
     

 



 

Quantitative Methods Inquires 

 

 
30 

     

   

 

 

11 10 2 9 3 2 8

4 3 2 7 5 4 3 2 6

6 5 4 3 2 5

7 6 5 4 3 2 4

8 7

4
2 2

2

3 7 4 12 14 12 52 85 48

6 42 138 246 144 18 114 296 370 290 120

4 54 294 730 774 288

12 100 340 642 772 550 168

30 230
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. 

Behaviors of coefficient of variation, coefficient of skewness, coefficient of kurtosis and index 

of dispersion of P-WAD for varying values of parameters and   have been shown graph-

ically in figure 2.  

 

 

  

Figure 2. Behaviors of coefficient of variation, coefficient of skewness, coefficient of kurtosis 

and index of dispersion of P-WAD for varying values of parameters and   
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4. Maximum likelihood estimation  

 

Let  1 2, ,..., nx x x be a random sample of size n from the P-WAD (2.2) and let xf be 

the observed frequency in the sample corresponding to  ( 1,2,3,..., )X x x k   such that 

1

k

x

x

f n


 , where k is the largest observed value having non-zero frequency. The log likeli-

hood function of P-WAD (2.2) can be given by 

         
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 



 
 

The maximum likelihood estimates  ˆ ˆ,  of  ,   of P-WAD (2.2) is the solutions of 

the following log likelihood equations  
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. 

where x is the sample mean and    log
d

x x
d

  


     and 

   log
d

d
  


   are digamma functions. These two log likelihood equations do not 

seem to be solved directly. However, the Fisher’s scoring method can be applied to solve 

these equations. We have 
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where    
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     are trigamma functions. 

The maximum likelihood estimates  ˆ ˆ,  of  ,   of P-WAD (2.2) is the solution 

of the following equations 
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where 0 0and   are the initial values of and    respectively. These equations are solved 

iteratively till sufficiently close values of ̂  and ̂  are obtained.  

 

5. Applications 

 

In this section the applications of the P-WAD has been discussed with two count da-

tasets from biological sciences. The dataset in table 1 is the data regarding the number of 

European red mites on apple leaves, available in Bliss (1953). The dataset in 2 is the frequen-

cies of the observed number of days that experienced X thunderstorm events at Cape Kenne-

dy, Florida for the 11-year period of record in the month of June and July, January 1957 to 

December 1967 and are available in Falls et al (1971) and Carter (2001). The goodness of fit 

of P-WAD has been compared with the goodness of fit given by Poisson distribution (PD), PLD, 

PAD, and P-WLD. Note that the estimates of the parameters are based on maximum likeli-

hood estimates for all the considered distributions. Based on the values of chi-square  2 ,

2log L and AIC (Akaike Information criterion), it is obvious that P-WAD is competing well 

with the considered distributions and gives better fit. Note that AIC has been calculated using 

the formula 2log 2AIC L k   , where k  is the number of parameters involved in the dis-

tribution.  
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Table 1. Observed and Expected number of European red mites on Apple leaves, available 

in Bliss (1953) 

Number of  

Red mites per 

leaf 

Observed 

frequency 

Expected frequency 

PD PLD PAD P-WLD P-WAD 

0 

1 

2 

3 

4 

5 

6 

7 

8 

70 

38 

17 

10 

9 

3 

2 

1 

0 

47.6 

54.6 

31.3 

11.9 

3.4 

0.8 

0.2 

0.1 

0.1 

67.2 

38.9 

21.2 

11.1 

5.7 

2.8 

1.4 

0.9 

0.8 

78.0 

37.3 

18.3 

8.8 

4.1 

1.8 

0.8 

0.3 

0.6 

69.8 

36.8 

20.1 

10.9 

5.8 

3.0 

1.6 

0.8 

1.2 

70.6 

35.6 

20.0 

11.1 

6.0 

3.2 

1.6 

0.8 

1.1 

Total 150 150.0 150.0 150.0 150.0 150.0 

ML estimates 

 

 ˆ 1.14666 
 

ˆ 1.26010 
 

ˆ 1.89341 

 

ˆ 1.09141 

ˆ 0.82194 
 

ˆ 1.4585 

ˆ 0.8360 
 

Standard Er-

rors 

 0.08743 0.11390 0.13240 0.26231 

0.25230 

0.12627 

0.06936 

2
 

 26.50 2.49 8.29 2.41 2.29 

d.f  2 4 3 3 3 

p-value  0.0000 0.5595 0.04038 0.4917 0.5144 

2log L
 

 485.61 445.02 447.02 425.35 439.41 

AIC  487.61 447.02 449.02 429.35 443.41 

 

Table 2. Frequencies of the observed number of days that experienced X thunderstorm 

events at Cape Kennedy, Florida for the 11-year period of record in the month of 

June, January 1957 to December 1967 

X Observed 

frequency 

Expected frequency 

PD PLD PAD P-WLD P-WAD 

0 

1 

2 

3 

4 

5 

6 

187 

77 

40 

17 

6 

2 

1 

155.6 

116.9 

43.9 

11.0 

2.0 

0.3 

0.3 

185.3 

83.4 

35.9 

15.0 

6.1 

2.5 

1.8 

190.7 

79.7 

34.4 

14.7 

6.1 

2.5 

1.9 

185.1 

83.7 

36.0 

15.0 

6.1 

2.4 

1.7 

187.6 

80.5 

35.4 

15.4 

6.5 

2.7 

1.9 

Total 330 330.0 330.0 330.0 330.0 330.0 

ML estimate  ˆ 0.75148 
 

ˆ 1.80427 
 

ˆ 2.17976 
 

ˆ 1.82188 
 

ˆ 1.01237 
 

ˆ 2.15124 
 

ˆ 1.01198 
 

Standard
̂

  

Errors  
̂

 

 0.04772 0.12573 0.10781 0.41748 

0.28219 

0.13789 

0.05056 

2
 

 31.6 1.43 1.64 1.41 1.31 

d.f  2 3 3 2 2 

p-value  0.0000 0.6985 0.6503 0.4941 0.5194 

2log L
 

 824.50 788.88 840.66 874.20 788.84 

AIC  826.50 790.88 842.66 878.20 788.73 
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Figure 3. Fitted probability plots for distributions 

 

6. Concluding remarks 

 

A Poisson-Weighted Akash distribution which includes Poisson-Akash distribution 

has been proposed. Its moments and moments based statistical constants have been derived 

and studied. Some statistical properties have been discussed. Maximum likelihood estimation 

has been discussed for estimating parameters of the distribution. Finally, applications of the 

proposed distribution have been explained through some count datasets and the goodness 

of fit has been compared with other discrete two parameter and one parameter distributions 

and it was found satisfactory over P-WLD, PAD, PLD, and PD on considered data sets. 
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