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Abstract 

A two-parameter weighted Shanker distribution which includes one parameter Shanker 

distribution introduced by Shanker (2015) as a particular case has been proposed for modeling 

lifetime data. Structural properties of the proposed distribution including moments and 

moment related measures, hazard rate function, mean residual life function and stochastic 

orderings have been discussed. The estimation of its parameters has been discussed using 

maximum likelihood estimation and statistical inferences based on estimated values of 

parameters have been presented. The goodness of fit of the proposed distribution have been 

discussed with two real lifetime data sets and the fit has been compared with one parameter 

exponential,  Lindley and Shanker distributions, and two-parameter weighted Lindley 

distribution and the fit in all data sets is found to be quite satisfactory. 

Key words: Shanker distribution; Lindley distribution; moments; hazard rate function; 

means residual life function; stochastic ordering; maximum likelihood estimation; goodness 

of fit 

 

1. Introduction 

 

The natural populations of human, wildlife, insect, plant, fish etc do not follows well 

defined sampling structures and, therefore, recorded observations of individuals from these 

populations are biased and will not have the original distribution unless every observation is 

given an equal chance of being recorded. The weighted distribution gives a unified approach 

to model biased data from natural populations. The concept of weighted distributions to 

model ascertainment biases have been introduced by Fisher (1934) which were later formu-

lized by Rao (1965) in a unifying theory for problems where the observations fall in non-

experimental, non-replicated and non-random. When an investigator records an observation 

in the nature according to certain stochastic model, the distribution of the recorded observa-

tion will not have the original distribution unless every observation is given an equal chance 

of being recorded. For example, suppose the original observation 0x  comes from a distribu-

tion having probability density function (p.d.f.)  0 1;f x  , where 1 may be a parameter vec-

tor, and observation x  is recorded according to a probability re-weighted by a weight func-
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tion  2; 0w x   , 2  being a new parameter vector, then x  comes from a distribution hav-

ing p.d.f. 

     1 2 2 0 1; , ; ;f x Aw x f x     (1.1) 

where A is a normalizing constant. It should be noted that such types of distributions are 

known as weighted distributions. The weighted distributions with weight function 

 2;w x x   are called length-biased distribution or simple size-biased distribution. Patil 

and Rao (1977, 1978) have examined some general probability models leading to weighted 

probability distributions, discussed their applications and showed the occurrence of 

 2;w x x   in a natural way in problems relating to sampling. 

In distribution theory, the study of weighted distribution is useful because it pro-

vides a new understanding of the existing standard probability distributions and it provides 

methods for extending existing standard probability distributions for modeling lifetime data 

due to additional parameter which creates flexibility in their nature. Weighted distributions 

occur in modeling clustered sampling, heterogeneity, and extraneous variation in the data 

set. 

Shanker (2015) has introduced a lifetime distribution named Shanker distribution 

for modeling lifetime data having p.d.f 

   
2

0 2
; ; 0, 0

1

xf x x e x
  



   


 (1.2) 

Shanker (2015) has derived and discussed its statistical and mathematical proper-

ties including its shapes, moments, skewness, kurtosis, hazard rate function, mean residual 

life function, stochastic ordering, mean deviations, order statistics, Bonferroni and Lorenz 

curves, Renyi entropy measure, and stress-strength reliability. Shanker (2015) has discussed 

the estimation of its parameter using both maximum likelihood estimation and method of 

moments and its detailed applications for modeling real lifetime data from biomedical sci-

ences and engineering. Shanker (2016) has obtained the Poisson mixture of Shanker distri-

bution named Poisson-Shanker distribution (PSD) and discussed its various mathematical and 

statistical properties, estimation of parameter and applications for various count data-sets.  

Shanker et al (2017) have detailed study on applications of PSD for modeling count data 

from different fields of knowledge and shown that in majority of data sets PSD gives better fit 

than both Poisson distribution and Poisson-Lindley distribution (PLD).  

Ghitany et al (2011) introduced a two-parameter weighted Lindley distribution 

(WLD) with parameters   and  defined by its p.d.f. 

 
 

 
1 1

; , 1 ; 0, 0, 0
1

xx
f x x e x

 


   
  

 
    

  
 (1.3) 

It can be easily verified that the Lindley distribution introduced by Lindley (1958) 

having p.d.f. 

   
2

; 1 ; 0, 0
1

xf x x e x
 



   


 (1.4) 

is a particular case of (1.3) for 1  . Ghitany et al (2008) have detailed study regarding its 

statistical and mathematical properties, estimation of parameter and application. The p.d.f of 

three-parameter generalized Lindley distribution (GLD) introduced by Zakerzadeh and Dolati 

(2009) having parameters , ,and    is given by 
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 
   

 
1 1

; , , ; 0, 0, 0, 0
1

xx
f x x e x

 


       
  

 
     

  
 (1.5) 

where        

  1

0

; 0ye y dy 


     

is the complete gamma function. 

It can be easily verified that the gamma distribution, the Lindley (1958) distribution 

and the exponential distribution are particular cases of (1.1) for  0  ,  1    and 

 1, 0   , respectively. Shanker (2016) have comparative study of  GLD and general-

ized gamma distribution (GGD) and found that in majority of lifetime data from engineering 

and biomedical science, GGD gives better fit than GLD.   Shanker et al (2015) have compar-

ative study of exponential and Lindley distribution for modeling of lifetime data and conclud-

ed that these two distributions are competing. Sankaran (1970) obtained discrete Poisson-

Lindley distribution by mixing Poisson distribution with Lindley distribution and discussed 

estimation of parameter and applications for count data. Shanker and Hagos (2015) have 

detailed study about applications of Poisson-Lindley for modeling count data in Biological 

sciences. Shanker and Mishra (2013 a) has introduced a two-parameter quasi Lindley distri-

bution (QLD)  and studied its various properties, estimation of parameters and applications 

and showed that QLD gives better fit that both exponential and Lindley distributions. Shank-

er  et al (2016) have discussed interesting properties of QLD and its detailed applications for 

modeling lifetime data from engineering and biomedical sciences and showed its superiority 

over some one parameter lifetime distributions. Shanker et al ((2013) has obtained size-

biased quasi Poisson-Lindley distribution (SBQPLD), discussed its mathematical and statistical 

properties, estimation of parameters, and applications for zero-truncated data and conclud-

ed that SBQPLD is an important model. 

There are many situations in the modeling of real lifetime data where the Lindley 

(1958) and Shanker (2015) distributions may not be suitable from a theoretical or applied 

point of view. In the present paper, a two-parameter weighted Shanker distribution has been 

introduced which includes Shanker distribution as particular case. Its various properties in-

cluding properties based on moments, hazard rate function, mean residual life function and 

stochastic ordering have been discussed. The estimation of its parameters has been dis-

cussed using maximum likelihood estimation. The goodness of fit of the proposed distribu-

tion has been discussed along with one parameter exponential, Lindley and Shanker distri-

butions and two-parameter weighted Lindley distribution.  

 

2. Weighted Shanker distribution 

 

The p.d.f. of  a two – parameter weighted Shanker distribution (WSD) can be obtained as 

   1

0; , ; ; 0, 0, 0f x A x f x x         (2.1) 

 

where A  is a normalizing constant and  0 ;f x  is the p.d.f. of Shanker distribution given in 

(1.2).  Thus the p.d.f. of weighted Shanker distribution can be obtained as 

 
   

 
1 1

2
; , ; 0, 0, 0xx

f x x e x
 


    

 

 
    


 (2.2) 
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where        

  1

0

; 0, 0ye y dy y 


      

is the complete gamma function. In WSD (2.2),   is the shape parameter and   is the scale 

parameter. It can be easily shown that at 1  , WSD reduces to Shanker distribution (1.2). 

Further, p.d.f. (2.2) can be expressed as a two-component mixture of gamma  ,   and 

gamma  1,  distributions. We have 

       1 2; , ; , 1 ; , 1f x p f x p f x         , (2.3) 

where  

2

2
p



 



,  

 
1

1 ; , xf x e x


 
 



 


, and  
 

1
1 1

2 ; , 1
1

xf x e x


 
 




   

 
. 

To study the nature and behavior of WSD for varying values of parameters  ,  , 

various graphs have been presented in figure 1. 
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Figure 1. Graphs of the pdf of WSD for varying values of parameters 

 

3. Moments and associated measures 

 

The r th moment about origin of WSD (2.2), using mixture representation (2.3), can 

be obtained as 

       1 2

0 0

; , 1 ; , 1r r r

r E X p x f x dx p x f x dx    
 

        

   

   

2

2
; 1,2,3,...

r

r r
r

  

   

   
 

 
 (3.1) 

Substituting 1,2,3, and 4r  in (3.1), the first four moments about origin of WSD 

are obtained as 

 
 

2

1 2

1  


  

 
 


 

  
 

2

2 2 2

1 2   


  

  
 


 

   
 

2

3 3 2

1 2 3    


  

   
 


 

    
 

2

4 4 2

1 2 3 4     


  

    
 


 

Again using relationship between central moments and moments about origin, the 

central moments about the mean of WSD are obtained as 

   

 

4 2

2 2
2 2

2 1 1     


  

     

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     

 

6 4 2 2

3 3
3 2

2 3 1 3 1 1        


  

       


 

     

   

 

8 2 6 2 4

2 2 2 3 2

4 4
4 2

2 4 3 2 2 3 11 8
3

4 4 3 4 3

        


      


  

       
 
      
 


 

The expressions for coefficient of variation (C.V.) coefficient of skewness  1 , 

coefficient of kurtosis  2 , and index of dispersion   of WSD are thus obtained as 

   

 

4 2

2

1

2 1 1
. .

1
CV

     

  

     
 

  
 

     

    

6 4 2 2

3
1 3 23 2

4 2
2

2 3 1 3 1 1

2 1 1

        


      

        
    
 

 

     

   

    

8 2 6 2 4

2 2 2 3 2

4
2 22

4 2
2

2 4 3 2 2 3 11 8
3

4 4 3 4 3

2 1 1

        


      


      

       
 
      
  

    
 

 

   

  

4 22

2 2

1

2 1 1

1

    


    

   
 

   
 

To study the nature of coefficient of variation (C.V.), coefficient of skewness  1 , 

coefficient of kurtosis  2  and index of dispersion    of WSD, their values have been 

computed for varying values of parameters   and   and presented in tables 1, 2, 3 and 4. 

 

Table 1. Coefficient of variation (C.V) of WSD for varying values of θ and α 

            

          θ            

    α 

0.5 1 2 3 4 5 

0.5 1.010153 1.232883 1.378705 1.40456 1.410746 1.412702 

1 0.777778 0.881917 0.971825 0.991701 0.996909 0.998627 

2 0.598321 0.637377 0.685119 0.699702 0.704163 0.705753 

3 0.509427 0.52915 0.559017 0.570477 0.574456 0.575976 

4 0.452381 0.46398 0.484322 0.493581 0.497157 0.498609 

5 0.411437 0.418939 0.43359 0.44121 0.444433 0.445815 

 

Table 1 demonstrate that for a given value of    , C.V increases (decreases) as 

the value of    increases. 
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Table 2. Coefficient of Skewness ( )1
b  of WSD for varying values of θ and α 

            

            θ              

    α 

0.5 1 2 3 4 5 

0.5 1.787566 2.219872 2.667337 2.778657 2.809461 2.819903 

1 1.451895 1.619848 1.876396 1.958191 1.983357 1.992342 

2 1.161334 1.206869 1.323613 1.378499 1.398831 1.406819 

3 1.002109 1.019904 1.083251 1.122849 1.140004 1.147347 

4 0.89532 0.90382 0.941812 0.971333 0.985946 0.992705 

5 0.816945 0.821565 0.845981 0.868511 0.881023 0.887231 

 

It is clear from table 2 that for a given value of    , 1 decreases (increases) 

as the value of    increases. 

Table 3. Coefficient of Kurtosis ( )2
b  of WSD for varying values of θ and α 

            

          θ            

     α 

0.5 1 2 3 4 5 

0.5 7.6272 10.01385 13.42662 14.4791 14.79528 14.90652 

1 6.1212 6.795918 8.15917 8.694089 8.873963 8.940946 

2 5.016461 5.147929 5.574669 5.818923 5.918823 5.960102 

3 4.504435 4.546485 4.731111 4.870413 4.937506 4.967923 

4 4.20166 4.219043 4.313019 4.400496 4.448868 4.472697 

5 4.000755 4.009194 4.062291 4.120585 4.15686 4.176119 

 

It is obvious from table 3 that for a given value of    , 
2 decreases (increases) 

as the value of    increases. 

Table 4. Index of dispersion     of WSD for varying values of θ and α 

            

          θ            

     α 

0.5 1 2 3 4 5 

0.5 2.380952 1.266667 0.580808 0.363409 0.263853 0.207399 

1 2.177778 1.166667 0.566667 0.360606 0.263072 0.207123 

2 2.068376 1.083333 0.547619 0.356061 0.261696 0.206614 

3 2.036199 1.05 0.535714 0.352564 0.260526 0.206158 

4 2.022409 1.033333 0.527778 0.349817 0.259524 0.205747 

5 2.015238 1.02381 0.522222 0.347619 0.258658 0.205376 

It is clear from table 4 that for a given value of    ,   decreases as the value of 

   increases. 

 

4. Reliability measures 

 

There are two important reliability measures of a distribution namely, the hazard 

arte function and the mean residual life function. In this section, the hazard rate function 

and the mean residual life function of WSD have been computed and their nature have been 

explained graphically   
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4.1 Hazard Rate Function  

The survival (reliability) function of WSD, using the mixture representation (2.3), can 

be obtained as 

         1 2; , 1 ; , 1
x x

S x P X x p f y dy p f y dy   
 

        

     

   

2

2

, xx x e
     

  

  


 
 (4.1.1) 

where  

  1, ; 0, 0y

z

z e y dy y 


      (4.1.2) 

is the upper incomplete gamma function.  

Thus, the hazard (or failure rate) function,  h x of WSD can be obtained as 

 
 

 

 

     

1 1

2
; 0, 0, 0

,

x

x

f x x x e
h x x

S x x x e

  

 

 
 

    

  




    

  
 (4.1.3) 

The behavior of  h x  of WSD  at 0x   and x  , respectively, are given by 

   
2

2

, 1

0 0 , 1
1

0 , 1

if

h f if

if










 



  




     ,                h    

The shapes of the hazard rate function,  h x  of the WSD for varying values of pa-

rameters  ,  are shown in the figure 2. It is obvious from the graphs of  h x that it is 

decreasing, increasing, upside bathtub or downside bathtub.  
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Figure 2. Shapes of the hazard rate function,  h x  of the WSD  

for varying values of parameter  ,   

 

4.2. Mean Residual Life Function 

The mean residual life function    |m x E X x X x    , using the mixture rep-

resentation (2.3), of the WSD can be obtained as 

 
 

 
1

x

m x y f y dy x
S x



   

 
     1 2

1
; , 1 ; , 1

x x

p y f y dy p y f y dy x
S x

   
  

     
 
   

        

     

2 2 2

2

1 1 ,

,

x

x

x e x x

x x e

 

 

          

     





        
 

   
 

 (4.2.1) 

The behavior of  m x at 0x   and x  , respectively, are thus given by 

 
 
 

2

2

1
0m

  

  

 



,     

 
1 1

m
h 

  

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The shapes of the mean residual life function,  m x  of the WSD for varying values 

of parameters  ,  are shown in figure 3. From the graphs of  m x , it is obvious that for 

values of 0.5  and 0  ,  m x  shows upside-down bathtub feature, and for values of 

0.5   and 0  ,  m x is monotonically decreasing. The upside-down bathtub feature of 

 m x of WSD is particularly useful for modeling engineering reliability data from burn-in-

studies. 

  

  

  

Figure 3. Shapes of the mean residual life function,  m x  of the WSD for varying values of 

parameters  ,   
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5. Stochastic ordering 

 

The stochastic ordering of positive continuous random variables is an important 

tool for judging their comparative behavior. A random variable X is said to be smaller than 

a random variable Y in the  

(i) stochastic order  stX Y if    X YF x F x for all x  

(ii) hazard rate order  hrX Y if    X Yh x h x  for all x  

(iii) mean residual life order  mrlX Y if    X Ym x m x for all x  

(iv) likelihood ratio order  lrX Y if 

 

 
X

Y

f x

f x
 decreases in x . 

The following interrelationships due to Shaked and Shanthikumar (1994) are well 

known for establishing stochastic ordering of distributions 

lr hr mrlX Y X Y X Y       

stX Y
  

It can be easily shown that WSD is ordered with respect to the strongest ‘likelihood 

ratio’ ordering. The stochastic ordering of WSD has been explained in the following theorem 

5.1: 

Theorem 5.1: Suppose X   WSD  1 1,   and Y   WSD  2 2,  . If 1 2   and 1 2   ( 

or 1 2   and 1 2   ) then 
lrX Y and hence hrX Y , mrlX Y and

stX Y . 

Proof: We have  

 

 

   

   
 

1

1 21 2

2

1 2

1 2 2 2 1

1 2
22 1 1 1

X

Y

f x x

f x

x
x e

x



  



    

   



 



   
  

   
  ;  0x           

Now, taking natural logarithm both sides, we get 

 

 

   

   
   

1

2

1 2

1 2 2 2 1
1 2 1 21 2

22 1 1 1

ln ln ln logX

Y

f x

f x

x
x x

x





    
   

   





    
       

     

 

This gives        
 

 

 

  
 1 21 2

1 2

1 2

ln X

Y

f x

f x

d

dx x x x

  
 

 


   

 
 

Thus for 1 2 1 2, and      (or 1 2   and 1 2   ),  
 

 
ln 0X

Y

f x

f x

d

dx
 . This means that 

lrX Y and hence hrX Y , mrlX Y and
stX Y .  

 

6. Maximum likelihood estimation of parameters 

 

Suppose  1 2 3, , , ... , nx x x x  be a random sample of size n  from WSD (2.2). The 

likelihood function, L of WSD  can be obtained as 
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  
 

1
1

2
1

1
n

n
n x

i in
i

L x x e


 


  


 



 
  

  
  

The natural log likelihood function is thus obtained as 

            2

1 1

ln 1 ln ln ln 1 ln ln
n n

i i

i i

L n x x n x       
 

           
     

The maximum likelihood estimates (MLE’s)  ˆ ˆ,   of the parameters  ,    of WSD are 

the solutions of the following non-linear equations 

 
2

1

1ln 2 1
0

n

i i

nL n
n x

x

 

    


    

  
  (6.1) 

   2
1

ln
ln ln 0

n

i

i

L n
n n x  

   


    

 
  (6.2) 

where    ln
d

d
  


  is the digamma function. 

The non-linear equations (6.1) and (6.2) seem to be difficult to solve directly be-

cause these maximum likelihood equations are not in closed forms. However, the Fisher’s 

scoring method can be applied to solve these equations. For, we have 

   

   

22

2 22 2 2
1

21ln 1n

i i

nnL

x

 

    


   

 
  

 

2 2

2
2

ln 2 lnL n n L

     

 
  

   
 

 
 

2

22 2

ln L n
n 

  


 

 
 

where    
d

d
   


  is the tri-gamma function 

For the MLEs   ˆ ˆ,   of    ,    of WSD (2.2), following equations can be solved  

0
0

0
0

2 2

2

0

2 2

0

ˆ2
ˆ

ˆˆ

ln ln ln
ˆ

lnˆln ln

L L L

LL L
 

 
  

     

 

   




    
             
      
       

  

where 0 and 
0 are the initial values of   and  , respectively. These equations are solved 

iteratively using R-software till sufficiently close values of ̂  and ̂  are obtained.  
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7. Goodness of fit and applications 

 

In this section, we present the goodness of fit and applications of WSD using 

maximum likelihood estimates of parameters to two real data sets and compare its fit with 

the one parameter exponential, Lindley and Shanker distributions and two-parameter 

WLD. The following two data sets have been considered for the goodness of fit of the pro-

posed distribution. 

 

Data set 1: The following data set represents the waiting times (in minutes) before service of 

100 Bank customers and examined and analyzed by Ghitany et al., (2008) for fitting the 

Lindley (1958) distribution. 

0.8 0.8 1.3 1.5 1.8 1.9 1.9 2.1 2.6 2.7 2.9 3.1 

3.2 3.3 3.5 3.6 4.0 4.1 4.2 4.2 4.3 4.3 4.4 4.4 

4.6 4.7 4.7 4.8 4.9 4.9 5.0 5.3 5.5 5.7 5.7 6.1 

6.2 6.2 6.2 6.3 6.7 6.9 7.1 7.1 7.1 7.1 7.4 7.6  

7.7 8.0 8.2 8.6 8.6 8.6 8.8 8.8 8.9 8.9 9.5 9.6 

9.7 9.8 10.7 10.9 11.0 11.0 11.1 11.2 11.2 11.5 11.9 12.4 

12.5 12.9 13.0 13.1 13.3 13.6 13.7 13.9 14.1 15.4 15.4 17.3  

17.3 18.1 18.2 18.4 18.9 19.0 19.9 20.6 21.3 21.4 21.9 23.0 

27.0 31.6 33.1 38.5  

 

Data Set 2: The following data represent the tensile strength, measured in GPa, of 69 car-

bon fibers tested under tension at gauge lengths of 20mm, Bader and Priest (1982) 

1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958 1.966 1.997 

2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179 2.224 2.240 2.253 2.270 

2.272 2.274 2.301 2.301 2.359 2.382 2.382 2.426 2.434 2.435 2.478 2.490 

2.511 2.514 2.535 2.554 2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684 

2.697 2.726 2.770 2.773 2.800 2.809 2.818 2.821 2.848 2.880 2.954 3.012 

3.067 3.084 3.090 3.096 3.128 3.233 3.433 3.585 3.585    

 

Generally the goodness of fit of continuous distributions are based on the values 

of 2ln L , AIC (Akaike Information Criterion) and K-S Statistic (Kolmogorov-Smirnov Sta-

tistic). In order to compare the goodness of fit of the proposed distribution along with other 

one parameter and two-parameter distributions, values of 2ln L , AIC and K-S of the 

respective distributions for two real data sets have been computed using maximum likeli-

hood estimates and presented in table 5.  The AIC and K-S Statistics are computed using 

the following formulae:  

2ln 2AIC L k    and     0K-S Sup n
x

F x F x  , where k  = the number of 

parameters, n  = the sample size ,  nF x is the empirical (sample) cumulative distribution 

function, and  0F x  is the theoretical cumulative distribution function. The best distribution 

is the distribution corresponding to lower values of 2ln L , AIC, and K-S statistics and high-

er p-value. 
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Table 5. MLE’s, - 2ln L, AIC, K-S Statistic and p-values of the fitted distributions  

of data sets 1 and 2 

 Model MLEs 2ln L  
AIC K-S Statistics p-value 

Data 1 

WSD 

 

ˆ 0.2106 

ˆ 1.1202   

635.04 639.04 0.046 0.984 

WLD ˆ 0.2244 

ˆ 1.3586   

635.59 639.59 0.050 0.964 

Shanker ˆ 0.1983   
635.26 637.26 0.053 0.782 

Lindley ̂  0.1865 
638.07 640.07 0.068 0.749 

Exponential ̂  0.1012 
658.04 660.04 0.173 0.005 

Data 2 

WSD ˆ 9.5997 

ˆ 23.3301 
 

100.06 104.06 0.058 0.981 

WLD ˆ 9.3756 

ˆ 22.3156 
 

101.95 105.95 0.059 0.973 

Shanker ̂  0.6580 
233.01 235.01 0.355 0.005 

Lindley ̂  0.6590 
238.38 240.38 0.404 0.000 

Exponential ̂  0.4079 
261.74 263.74 0.448 0.000 

 

It is clear from the close examination of table 5 that WSD is the best model among 

the one parameter exponential, Lindley and Shanker distributions and two – parameter 

WLD, since it has the lowest - 2ln L and K-S statistic, and higher p-value.  

The variance-covariance matrix and 95% confidence intervals (CI’s) for the parame-

ters ̂  and ̂  of WSD for data sets 1 and 2 are presented in table 6. 

 

Table 6. Variance-covariance matrix and 95% confidence intervals (CI’s) for the parameters 

̂  and ̂  

Data set Parameters Variance-Covariance Matrix 95% CI 

̂                             ̂  
Lower                       Upper 

1 ̂  

̂  

0.00094                0.007221 

 

0.007221              0.070571 

0.1561                          0.2765 

 

0.6517                            1.6929 

2 ̂  

̂  

2.6353 6.3659 

 

6.3659                    15.7092 

6.7676                            13.1510 

 

16.4018                          31.9878 

 

The profile of likelihood estimates for parameters ̂  and ̂  of WSD for two data 

sets are presented in figures 4(a) and 4(b). 
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Figure 4(a). Likelihood Estimates for parameters of WSD to data set-1 

 

Figure 4(b). Likelihood Estimates for the parameters of WSD to data set-2 

 

The fitted pdf plots for WSD, WLD, Shanker, Lindley and exponential distributions 

for data sets 1 and 2 are shown in figure 5. 

 
 

Figure 5. Fitted pdf plots of distributions for data sets 1 and 2 
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8. Concluding remarks 

 

A two-parameter weighted Shanker distribution (WSD) which includes one parame-

ter Shanker distribution introduced by Shanker (2015) has been proposed for modeling life-

time data. Its structural and Statistical properties including shapes of probability density func-

tion for varying values of parameters, moments and moment related measures, hazard rate 

function, mean residual life function and stochastic ordering have been discussed. The na-

ture of hazard rate function and mean residual life function has been discussed graphically 

with varying values of parameters. The maximum likelihood estimation for estimating its 

parameters has been discussed. Variance-covariance matrix and confidence intervals for 

parameters have been obtained and presented. The goodness of fit of WSD is over one pa-

rameter exponential, Lindley and Shanker distributions, and two-parameter WLD has been 

found to be quite satisfactory. 
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