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Abstract 

The Michaelis-Menten kinetics is a well-known model in biochemistry, widely used in enzyme-

substrate interaction (Nelson and Cox, 2008). The same mathematical formula is called 

Langmuir equation (Masel, 1996) when is used to model generic adsorption of chemical 

species, and finally, an empirical equation of this form is applied to microbial growth and it is 

called J. Monod kinetics (Martinez-Luaces, 2008). 

A typical problem in chemistry and/or biochemistry consists in determining the parameters of 

these equations from experimental data. In order to solve this problem, several methods were 

proposed, Lineweaver-Burk, Hanes-Woolf, Hofstee, Scatchard and Cornish-Bowden-Eisenthal 

are the most important ones (Nelson and Cox, 2008). 

In this paper, all these methods are analysed and compared in terms of exactitude and 

precision. For this purpose, simulated data were generated and perturbed using Gaussian 

noise with different amplitudes. The same methodology was used in a previous work 

(Martinez-Luaces, 2009).  

Absolute and relative errors of the different methods are compared, and taking into account 

the results, general conclusions about their robustness are obtained. This is particularly 

important in order to choose the best method when the relation between trend and noise tends 

to increase.  
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Introduction  

The non-linear mathematical formula  

bx

xa
y


   (Eq. 1)   is widely used in chemis-

try and biochemistry for different purposes. For instance, the Michaelis-Menten kinetics is a 
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well-known model in biochemistry of the form    

 
 SK

Sv
v

m 
 max

0    (Eq. 2)   where  0v   and   

maxv    are the initial and the maximum velocity of the enzymatic reaction,  S  is the sub-

strate concentration and  mk  is a constant (called Michaelis constant), which depends on the 

enzymatic reaction considered (Nelson and Cox, 2008). 

Irving Langmuir, a Nobel Prize winner in chemistry, developed an equation that re-

lates the coverage or adsorption of molecules on a solid surface to gas pressure or concen-

tration of a medium above the solid surface at fixed temperature (Masel, 1996). The equa-

tion is   

P

P









1
 (Eq. 3), where   is the fractional coverage of the surface, P  is the gas 

pressure (or concentration in the case of liquids) and   is a constant. A very simple algebra-

ic manipulation gives  

P

P








1

   (Eq. 4)    which is just a particular case of (Eq. 1).  

The last example is a mathematical model for the growth of microorganisms pro-

posed by Jacques Monod in 1949. The mathematical formula is    

SK

S

S 
 max

    (Eq. 5)    

where      is the specific growth rate of microorganisms and  max    represents its maxi-

mum value, S  is the concentration of the limiting substrate for growth and,  SK   is called 

the “half-velocity constant” (Martinez-Luaces, 2008 and Martinez-Luaces, 2009) since it cor-

responds to the value of   S    when    

2

1

max





   as well as the constant   mK    in (Eq. 2). 

The Monod equation has the same form as the Michaelis-Menten equation, but it 

was developed empirically whereas the Michaelis-Menten model is based on theoretical 

considerations. 

A typical problem that arises in the treatment of data corresponding to these equa-

tions is the parameters determination since all of them are non-linear models. In order to 

solve this problem, several methods were proposed to linearize these equations, Lineweaver-

Burk, Hanes-Woolf, Eadie-Hofstee, Scatchard, and Eisenthal and Cornish-Bowden are the 

most important ones. 

In this paper, all these methods will be compared in terms of exactitude and preci-

sion, using simulated data perturbed with Gaussian noise with different amplitudes. The 

details of this procedure will be described in the following section. 

 

Data Simulation 

 

Since equations (2), (3) and (4) represent the same mathematical model (Eq 1), we 

choose one of them (the Michaelis-Menten equation) to show the methodology to be fol-

lowed, so the parameters will be  MK    and   maxV    and variables will be  [S]  and  0v .   For 

simplicity the notation in this paper will be  MK ,  MV ,  S   and  0V  , respectively. 
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Different enzymes have different  MK  values. They typically range from 
110
 to 

M710
 , so 10MK  can be considered as a typical value  depending on the units em-

ployed (for example  MmM 21010    or even  MM 51010    are both possible values, 

although they are very different). On the other hand  MV  , the maximum velocity depends 

on a constant named  CatK ,  and  tE   the  total enzyme concentration , like in    

 tCatM EKV      (Eq. 6). The constant   C a tK   can vary between   15.0 s    and  

 140000000 s    so, once again, it is difficult to propose a “typical value” for   MV . Thus, 

we decided to consider   100MV   which may be taken as a typical value if units are  

min
M

 . 

Then, a Gaussian noise with different amplitudes was superimposed to the theoret-

ical data obtained from (Eq 2) with  100MV  , 10MK   and S  varying from 0 to 30. The 

graphics in Figure 1 show the simulated curves with the Gaussian noise multiplied by 2, 3 

and 4. 

 

Figure 1. Initial velocity vs Substrate concentration. Simulated curves. 

 

 

 

These simulated data will take the place of the real experimental data and they will 

be used to determine the parameters MK  and MV  ,which real values are known, so the 

different methods could be compared in terms of exactitude and precision. 
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A similar methodology was followed in a previous paper (Martinez-Luaces et al., 

2006) for Electrochemical Noise studies. More recently, in a mathematical modelling paper 

(Martinez-Luaces, 2015) this methodology was utilized for educational purposes. 

 

Methods for obtaining the parameters in Michaelis-Menten equation 

 

Several methods were proposed for linearizing the Michaelis-Menten equation. 

Perhaps the simplest one is the Lineweaver-Burk (or double reciprocal plot), which is a 

graphical representation of 

0

1

V
 vs. 

S

1
 (Nelson and Cox, 2008). It is easy to observe that the 

reciprocal of (Eq 2) gives    

MM

M

VSV

K

V

111

0

    (Eq.7)   so, the  x  intercept of the graph 

represents  

MK

1
    and the  y  intercept is equivalent to the inverse of  MV  . An alterna-

tive way is to obtain the coefficients of a linear regression (i.e.  

M

M

V

K
 and  

MV

1
)  and finally 

get the  MK   and  MV  .  

The obtained results are summarized in Table 1, with the corresponding absolute 

and relative errors. 

 

Table 1. Absolute and relative errors for the Lineweaver-Burk method 

Noise  Lineweaver-Burk  Method 

Km Vm Absolute 

error  Km* 

Absolute 

error  Vm* 

Relative 

error Km* 

Relative  

error Vm* 

Amplitud Noise 1 12.5936237 112.8575325 2.5936 12.8575 0.2594 0.1286 

Amplitud Noise 2 17.1811787 135.3073339 7.1812 35.3073 0.7181 0.3531 

Amplitud Noise 3 27.4897736 185.3756073 17.4898 85.3756 1.7490 0.8538 

 

A second methodology was posed by Hanes and Woolf. These researchers pro-

posed to plot 

0V

S
 against S , since a rearrangement of (Eq. 1) gives 

M

M

M V

K

V

S

V

S


0

    (Eq. 

8). Once again, a linear regression gives the coefficients  

MV

1
  and  

M

M

V

K
  and lastly they 

can be used straightforward to obtain  MV   and  MK .  

The results of this method can be observed in Table 2 

 

Table 2. Results corresponding to Hanes-Woolf method 

Noise 

 Hanes-Woolf Method 

Km Vm 
Absolute 

error  Km* 

Absolute 

error  Vm* 

Relative 

error Km* 

Relative  

error Vm* 

Amplitud Noise 1 10.1840993 100.685067 0.1841 0.6851 0.0184 0.0069 

Amplitud Noise 2 10.4974793 101.751327 0.4975 1.7513 0.0497 0.0175 

Amplitud Noise 3 11.0019191 103.400162 1.0019 3.4002 0.1002 0.0340 
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A third method is due to Eadie and Hofstee. They inverted (Eq. 2) and multiplied by 

MV   obtaining   

S

SK

V

V MM 


0

 (Eq. 9)  and a rearrange gives  0
0 V

S

VK
V M

M    (Eq. 10)    

or   MM V
S

V
KV  0

0    (Eq. 11).   

A plot of    0V   against   

S

V0
   will yield   MV   as the y intercept and  MK    as 

the slope of the straight line. Alternatively, a linear regression will give coefficients  MK    

and   MV   from where the parameters are easily obtained as it is showed in Table 3 with the 

corresponding absolute and relative errors. 

 

Table 3. Parameters and errors corresponding to Eadie-Hofstee method 

Noise 

 Eadie and Hofstee Method 

Km Vm 
Absolute 

error Km* 

Absolute 

error  Vm* 

Relative 

error Km* 

Relative  

error Vm* 

Amplitud Noise 1 10.16691318 100.637843 0.1669 0.6378 0.0167 0.0064 

Amplitud Noise 2 9.911745044 99.38537855 0.0883 0.6146 0.0088 0.0061 

Amplitud Noise 3 9.231519446 96.2503578 0.7685 3.7496 0.0768 0.0375 

 

The Scatchard plot can be obtained from (Eq 11), that can be multiplied by 

MK

1
  

to give: 

M

M

M K

V

S

V
V

K
 0

0

1
 (Eq. 12) or  

M

M

M K

V
V

KS

V
 0

0 1
 (Eq. 13). Once again, a 

linear regression will give a slope   

MK

1
    and a y intercept    

M

M

K

V
  . 

As in other methods  MK   and  MV   can be reached from these coefficients and 

compared with the theoretical values  10MK   and 100MV . Table 4 shows the results. 

 

Table 4. Results corresponding to Scatchard method 

Noise 

 Scatchard Method 

Km Vm 
Absolute 

error  Km* 

Absolute 

error  Vm* 

Relative 

error Km* 

Relative  

error Vm* 

Amplitud Noise 1 10.4434129 101.877116 0.4434 1.8771 0.0443 0.0188 

Amplitud Noise 2 11.0831493 104.616199 1.0831 4.6162 0.1083 0.0462 

Amplitud Noise 3 11.9679929 108.424515 1.9680 8.4245 0.1968 0.0842 

 

The final methodology to be discussed here is the Eisenthal and Cornish-Bowden 

direct linear plot. In this original approach (Eq. 4) is rearranged to give    1
0


S

K

V

V MM
  

(Eq. 14)   so if   MV   is plotted against  MK   a straight line is obtained and the x intercept 

is  S  while the y intercept is   0V  .  
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Then, for each observation   0,VS   a straight line is obtained. Theoretically all 

these lines will intersect at a common point, whose co-ordinates   MM VK ,   provide the 

values of the parameters. When the observations are subject to error there will be  

 1
2

1

2









nn

n
  (Eq. 15)   intersections.  

Each intersection provides an estimate of  MK  and an estimate of   MV   , then the 

corresponding medians will give the best estimate for  MK  and  MV  , respectively. The re-

sults of this procedure are given in Table 5. 

 

Table 5. Results and errors corresponding to Cornish-Bowden and Eisenthal method 

Noise 

Cornish-Bowden & Eisenthal Method 

Km Vm 
Absolute 

error  Km* 

Absolute 

error  Vm* 

Relative 

error Km* 

Relative  

error Vm* 

Amplitud Noise 1 10.0167 100.3243 0.0167 0.3243 0.0017 0.0032 

Amplitud Noise 2 9.8727 99.7177 0.1273 0.2823 0.0127 0.0028 

Amplitud Noise 3 9.6059 98.5973 0.3941 1.4027 0.0394 0.0140 

 

Results 

 

The results of five different methods were showed in Tables 1-5 in the previous sec-

tion. In order to compare all these results, Table 6 shows the minimum absolute and relative 

errors in MK   and   MV    and which methodology was the best in each case, depending on 

the noise amplitude.  

 

Table 6. Comparison of the results for the different methods 

Noise 
Min.  abs. 

error Km 

Min.  abs. 

error Vm 

Min. rel. 

error Km 

Min. rel. 

error  Vm 

Min. abs. 

Error Meth-

od Km 

Min. abs. 

Error 

Method Vm 

Min. rel. 

Error Meth-

od Km 

Min. rel. 

Error Meth-

od Vm 

Amplitud Noise 1 0.0167 0.3243 0.0017 0.0032 CBE CBE CBE CBE 

Amplitud Noise 2 0.0883 0.2823 0.0088 0.0028 H CBE H CBE 

Amplitud Noise 3 0.3941 1.4027 0.0394 0.0140 CBE CBE CBE CBE 

 

 

The method due to Eisenthal and Cornish-Bowden was the best one in all cases, 

except when the Gaussian noise had double amplitude and  MK   is the considered parame-

ter. In this last case, Eadie and Hofstee’s method obtained the minimum absolute and rela-

tive error in the parameter MK  , but not  in  MV    where once again Eisenthal and Cornish-

Bowden gave the best estimate. 

This last method does not seem to be as simple as the others and the number of in-

tersections grows quadratically – since     21
2

1

2
nOnn

n









  – demanding more com-

putation time than other simpler methodologies. On the other hand, it gives the best results 

in all the cases except one, for both parameters  MV   and MK  . 
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Conclusions 

 

In the previous sections several data for initial velocity and substrate concentration 

were simulated. For this purpose, typical values of the parameters  MK   and  MV   were 

proposed and the theoretical values obtained were perturbed with Gaussian noise of differ-

ent amplitudes. These simulated values were used to check five different linearization meth-

ods for the Michaelis-Menten equation. The best results were obtained by the methodology 

proposed by Eisenthal and Cornish-Bowden. 

This result can be explained because the original data    0,VS   are not trans-

formed like in other methods where reciprocal quantities, product, etc., are performed be-

fore plotting the data, diminishing the possibility of errors propagation. Moreover, taking 

medians of the intersection points co-ordinates may give more robustness to this method, 

since medians are not sensible to extreme values (Janke and Tinsley, 2005). The same situa-

tion happens with outliers, because the mean can be completely upset by a single outlier, 

while the sample median is little affected for these values that are absolutely different in 

relation to the majority of the sample. 

Another aspect that must be considered is that several methods with a poor per-

formance like Lineweaver-Burk may be useful for other purposes. For instance, Lineweaver-

Burk’s plots allow the researcher to know if there is an inhibitor and if it is competitive or 

uncompetitive (Nelson and Cox, 2008). This possibility was analyzed in detail in a paper 

written by Dixon (1953).  

A different approach was proposed 20 years later by A. Cornish-Bowden who pro-

vided a simple way of determining the inhibition constant of an uncompetitive, mixed or 

non-competitive inhibitor (Cornish-Bowden, 1974). 

Taking into account the previous comments, the errors (relative and absolute) of 

the different methods are an important aspect to be considered, but not the unique one, 

particularly if inhibition is taking place. As a consequence, the final election of the method-

ology to be used will depend on the objectives of the research project. 
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