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ABSTRACT  
In this paper we make a new presentation of the Weibull distribution. We will make 

some add-ons for the Statistics Toolbox in MATLAB with our functions for the form with scale 
and displacement of the distribution. Finally we will use these new functions on applications 
of the Weibull distribution. 
 
Key words: probability density function (pdf), cumulative distribution function (cdf), survivor 
function (sf), reliability function (rf).  

 
 

INTRODUCTION 
 
The Weibull distribution has numerous applications, but most of the programs that 

exist like MATLAB see [6], and others, have functions only for the scaled model of the 
distribution. In this paper we will present the Weibull distribution as probability function of 
the exponential distribution (for other types of generalizations of Weibull distribution see [7], 
[9]). We mention the classic application of the Weibull distribution which is using the scale 
parameter as an estimator of the wind speed in the wind turbines, see [1], [5], [12], [13], 
[14], [15], [16]. Additionally this estimation can be done in a mixt context where other 
distributions are used as well and even other techniques, see [2], [3], [4], [8], [10], [11].  The 
scope of this paper is to make a completion by using the Weibull distribution with its location 
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parameter. So we will define the Weibull distribution the scaled model with displacement 
having the shape, scale and location parameter. 

Like before mentioned, existing programs have functions only for the scaled form of 
the Weibull distribution. For this reason we come to complete the statistics toolbox in 
MATLAB with functions that compute the pdf, cdf, quantiles, mean and variance (dispersion) 
the Weibull distribution with 3 parameters. We also have functions that plot the cdf for each 
of the distribution. Through these functions we wish to encourage the usage of the 3-
parameter Weibull distribution. 

 

WEIBULL DISTRIBUTION 
 
Definition 2.1. The Weibull distribution  is defined through  

where  is the shape parameter and  is the exponential distribution with . 
 
Observations 2.1.  

 i (scale) Formally   is called the scale parameter and the definition 

becomes . 

 ii (positive defined) By definition the random variable T is positive defined. 
 iii (reliability function – rf, cumulative distribution function – cdf, probability density 
function – pdf) Specifically the Weibull distribution T is defined through: 
‐ Reliability function (rf): , ,  because  

( )=exp( ; 

‐ Cumulative distribution function (cdf): , , 

 

‐ Probability density function (pdf): , ,  

because  is right differentiable in 0 just for . 

 
The expressions with scaling are: 

- rf: ; 

- cdf: ; 

- pdf:  ; 

iv (Weibull distribution with displacement) Weibull distribution with displacement (with 

.location parameter and a=0 )  is defined through  

where  is the shape parameter and  is the exponential distribution with 
displacement equal to 0 and . 

The Weibull distribution with displacement  is defined through: 

- Reliability function (rf): ,   ;  

 

Because  
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- Cumulative distribution function (cdf): , 

;  

- Probability density function (pdf): ,  ,  with the 

exception of  because  is not differantiable in a just for , meaning:  

 
By definition the Weibull distribution with displacement is positive defined. 
Similar to the expressions with scaling we have: 

- rf: ; 

- cdf: ; 

- pdf:  

 
Moments of the Weibull distribution. The mean and variance (dispersion) of the 

random variable T are: 

 

 
 
Moments of the Weibull distribution with scaling. 

 

 
 
To generalize the moments of k order of random variable T is: 

 
  

Moments of the Weibull distribution with scaling and displacement. We have (by 
definition) the mean  , variance (dispersion) similar to the 

moments of superior order, we have: 
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MATLAB – STATISTICS TOOLBOX – WEIBULL DISTRIBUTION 
 
Waloddi Weibull offered the distribution that bears his name as an appropriate 

analytical tool for modeling the breaking strength of materials. Current usage also includes 
reliability and lifetime modeling. The Weibull distribution is more flexible than the 
exponential for these purposes. [1] 

Matlab Statistics Toolbox offers functions for the Weibull distribution with two 

parameters 
baxb eabxy  1 ,  where a is the scale parameter and b is the shape parameter. 

We will briefly go through the available functions in Matlab for the Weibull 
distribution.  

 
i) wblpdf - Weibull probability density function 
Syntax 
Y = wblpdf(X,A,B) 
The pdf of the Weibul distribution is:

 

 
For the pdf of the Weibull distribution with one parameter we will use A = 1. 
 
ii) wblcdf  - Weibull cumulative distribution function 
Syntax 
P = wblcdf(X,A,B) 
[P,PLO,PUP] = wblcdf(X,A,B,PCOV,alpha) 

The cdf of the Weibull distribution is: 

 
 
iii) wblinv - Weibull inverse cumulative distribution function 
Syntax 
X = wblinv(P,A,B) 
[X,XLO,XUP] = wblinv(P,A,B,PCOV,alpha) 

Inverse cumulative distribution function: 

 
 
iv) wblrnd – Weibull random numbers 
Syntax 
R = wblrnd(A,B) 
R = wblrnd(A,B,m,n,...) 
R = wblrnd(A,B,[m,n,...]) 

 
v) wblplot - Weibull probability plot 
Syntax 
wblplot(X) 
h = wblplot(X) 
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vi) wblstat - Weibull mean and variance (dispersion) 
Syntax 
 [M,V] = wblstat(A,B) 
The mean of Weibull distribution with parameters a and b is:  

  1b1a   

the variance is: 

    2112 b1b21a     

 
vii)  wblfit - Weibull parameter estimates 
Syntax 
parmhat = wblfit(data) 
[parmhat,parmci] = wblfit(data) 
[parmhat,parmci] = wblfit(data,alpha) 
[...] = wblfit(data,alpha,censoring) 
[...] = wblfit(data,alpha,censoring,freq) 
[...] = wblfit(...,options) 

 
Estimates the Weibull distribution parameters in the probability 

density:   )x(Iexbab,axfy ),0(
a

x

1bb

b











  

 
viii) wbllike - Weibull negative log-likelihood 
Syntax 
nlogL = wbllike(params,data) 
[logL,AVAR] = wbllike(params,data) 
[...] = wbllike(params,data,censoring) 
[...] = wbllike(params,data,censoring,freq) 

The Weibull negative log-likelihood for uncensored data is: 

 
where f is the Weibull pdf. 
wbllike is a utility function for maximum likelihood estimation. 
 

4. FUNCTIONS FOR THE THREE PARAMETER WEIBULL DISTRIBUTION 
 
The Statistics Toolbox does not have functions for the Weibull distribution with three 

parameters. For this reason we come with our own functions. 
i) The probability density function 
The pdf of 3 parameter Weibull distribution is: 

 
function [P] = wbl3pdf(x, theta, beta, gamma) 
%theta scale parameter 
%beta shape parameter 
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%gamma location parameter 
n = length(x); 
f = zeros(1,n); 
for i=1:n 
    if((x(i) > gamma) && (x(i)>0) && (gamma>=0)) 
        f(i) = (beta/theta)*( ( (x(i)-gamma)/theta )^(beta-1) )*exp( -
( (x(i)-gamma)/theta )^beta ); 
    else 
        f(i) = 0; 
    end     
end 
P = f; 
end 

 
ii) The cumulative distribution function 
The cdf of 3 parameter Weibull distribution is: 

 

where ;
1

,
1

 



   

function [P] = wbl3cdf(x, theta, beta, gamma) 
%theta scale parameter 
%beta shape parameter 
%gamma location parameter 
n = length(x); 
F = zeros(1,n); 
for i=1:n 
    if( (x(i) > gamma) && (x(i)>0) && (gamma>=0)) 
        F(i) = 1 - exp(-( (x(i)-gamma)/theta)^beta); 
    else 
         F(i) = 0; 
    end 
end 
P = F; 
end 

 
iii) The inverse cumulative distribution function 
The inverse cdf of 3 parameter Weibull distribution is: 

 
function [P] = wbl3inv(x, theta, beta, gamma) 
%x probability that is calculated 
%theta scale parameter 
%beta location parameter 
%gamma displacement parameter 
n = length(x); 
F = zeros(1,n); 
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for i=1:n 
    if((x(i)>0) && (x(i)<1) && (gamma>=0)) 
        F(i) = (-theta*((log(1-(x(i))))^(1/beta)))*sqrt(-1)-gamma;        
    else 
        F(i) = NaN; 
    end    
end 
P = real(F); 
end 

 
iv) The mean and the variance (dispersion) 
The formulas respectively for mean and variance (dispersion) are: 

mean: 


 







 1

1
m  

variance (dispersion): 






























 1

1
2

1 22  

function [M V] = wbl3stat(theta, beta, gamma) 
%theta scale parameter 
%beta shape parameter 
%gamma location parameter 
mean = theta*gamma( (1/beta) + 1) + gamma; 
var = (theta^2)*( gamma( (2/beta) +1 ) - ( gamma( (1/beta)+1 ) )^2 ); 
M= mean; 
V = var; 
end 

 
v) Random numbers generation 

where x comes from a uniform distribution with values 

between 0 and 1. 
function [X] = wbl3rnd(theta, beta, gamma, n) 
%theta scale parameter 
%beta shape parameter 
%gamma location parameter 
y = zeros(1,n); 
for i =1:n 
    y(i) = (( -(theta^beta) * log( (1- (rand(1,1)) ) ) )^(1/beta)) + 
gamma; 
end 
X = y; 
end 

 
vi) Plotting of the cumulative distribution function 

function wbl3plot(x, theta, beta, gamma,) 
%theta scale parameter 
%beta shape parameter 
%gamma location parameter 
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n = length(x); 
lnx = zeros(1,n); 
Fecdf = wbl3cdf(x, theta, beta, gamma); 
for i=1:n     
    lnx(i) = log(x(i)); 
end 
plot(lnx, Fecdf, 'bo'); 
end 

 

APPLICATIONS 
 

1) Data were gathered regarding the behavior of a truck gearbox, for a length 
of 15.000 km. During the period of analysis, 141  breaks of the gearbox were recorded. 

The results, as frequency distribution function of the  breaks, are in Table I: 
       Table I 

ti ki (%) (ti) 

1 2 3 4 
3000 
6000 
9000 
12000 
15000 

26 
49 
39 
22 
4 

18.6 
53.2 
81.1 
96.6 
99.7 

0.82 
0.46 
0.18 
0.04 
0.008 

Total  = 

141 

- - 

  
By constructing and studying the probabilistic networks a 3-parameter Weibull model 

could be used, with the shape parameter =2, scale parameter =6900 and the location 
parameter  =0. 

The survivor function will have the form: 

 
We will use our functions for the 3-Parameter Weibull Distribution. 
Since the location parameter is 0 we have a 2-Parameter Weibull Distribution, so we 

can also use the Mathlab functions to verify the results of our functions. 
 
Command history  
To shorten the command history we will not always show the results of the 

commands. 
First we initialize variables with the values of the scale, shape and locations 

parameters, and a vector with the number of kilometers traveled. 
theta = 6900 
beta = 2 
gamma = 0 
t = [3000 6000 9000 12000 15000] 
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We calculate the density distribution, first with the Mathlab function, then with our 
function: 

 
wblpdf(t, theta, beta) 
wbl3pdf(t, theta, beta, gamma) 
The answer was identical for the both queries. The answer is: 
ans =  1.0e-003 * 
    0.1043    0.1183    0.0690    0.0245    0.0056 
 
We calculate the distribution function: 
wblcdf(t, theta, beta) 
wbl3cdf(t, theta, beta, gamma) 
The answer is: 
ans =    0.1722    0.5305    0.8176    0.9514    0.9911 
 
We calculate the quantiles: 
wblinv(0.25, theta, beta) 
wbl3inv(0.25, theta, beta, gamma) 
The answer is: 
ans =  3.7009e+003 
 
wblinv(0.5, theta, beta) 
wbl3inv(0.5, theta, beta, gamma) 
The answer is: 
ans =  5.7446e+003 
 
wblinv(0.75, theta, beta) 
wbl3inv(0.75, theta, beta, gamma) 
The answer is: 
ans =  8.1241e+003 
 
We calculate the mean and the variance (dispersion): 
[m v] = wblstat(theta, beta) 
[m v] = wbl3stat(theta, beta, gamma) 
The answer is: 
mean: m =  6.1150e+003 
variance (dispersion): v =  1.0217e+007 
 
2) Trials have been made over five elements of a technical system. The cycles which 

the breaks have followed (ascending reordered) were: 1.2, 2.0, 2.5, 2.9, 3.6. The estimator 
of the distribution function:  lead to (in %): 10, 30, 50, 70, 90, which, 
represented on a probabilistic Nelson Thompson network along with the values of the 
working time allows us to state that the variable „work time” (in cycles) follows a Weibull law 

with  = 2.65 and  = 2.7 cycles.(A.9)We will add the location parameter = 1 cycle, which 
helps us to state that a component will work at least 1 cycle until it will break.  
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Command history: 
theta = 2.7 
beta = 2.65 
gamma = 1 
t = [1.2 2.0 2.5 2.9 3.6] 
wbl3pdf(t, theta, beta, gamma) 
The result is: 
ans =   0.0134    0.1774    0.3014    0.3706    0.3731 
wbl3cdf(t, theta, beta, gamma) 
The result is: 
ans =   0.0010    0.0694    0.1899    0.3257    0.5954 
wbl3inv(0.25, theta, beta, gamma) 
The result is: 
ans =   0.5636 
wbl3inv(0.50, theta, beta, gamma) 
The result is: 
ans =   1.1789 
wbl3inv(0.75, theta, beta, gamma) 
The result is: 
ans =   1.8303 
[m v] = wbl3stat(theta, beta, gamma) 
The result is: 
mean: m =  3.3996 
variance (dispersion):v =   0.9499 
We will now draw the dispersion function:  
wbl3plot(t, theta, beta, gamma) 

 
Fig. 1. Plotting of pdf from application 2)  
 
Observation. We could have used as an estimator the survival function instead of 

the cumulative distribution function. We then would have had the survival function estimator, 
which would lead to the values (in %):  90, 70, 50, 30, 10. 
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6. CONCLUSIONS 
 
This article treats more the probabilistic side of the Weibull distribution, for this 

reason we don’t have functions that estimate the parameters for the scaled model with 
displacement of the Weibull distribution. 

The functions presented in this paper can be used in MATLAB also for the case when 
the location parameter is 0, but their purpose is to be used on applications of the Weibull 
distribution when the location parameter has a value that influences the calculation of the 
pdf, cdf or quantile. 
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