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Abstract: 
This paper describes how fuzzy goal programming can be efficiently used to solve 

bilevel programming problems with fuzzy parameters. In the model formulation of the 
problem, the tolerance membership functions for the fuzzily described objective functions of 
decision makers are defined by determining individual optimal solution of each of the level 
decision makers. Since the objectives are potentially conflicting in nature, a possible relaxation 
of the upper level and lower level decision are considered by providing preference bounds on 
the decision variables for avoiding decision deadlock.  Then fuzzy goal programming 
approach is used for achieving highest degree of each of the membership goals by minimizing 
negative deviational variables. Three fuzzy goal programming models are presented. Distance 
function is used to identify which fuzzy goal programming models offers better optimal 
solution.  A numerical example is presented to demonstrate the potential use of the proposed 
approach.   

Keywords: bilevel programming problem, fuzzy goal programming, fuzzy 
parameters, deviational variables, distance functions 

 

1. Introduction 
 
Decision making within a hierarchical organization may be characterized by an 

attempt to satisfy a set of potentially conflicting objectives of different decision making units 
situated in hierarchical levels as completely as possible in an environment comprised of a set 
of finite resources, conflicting interest and a set of constraints in order to deal with the 
situation in which all objectives can not be completely and simultaneously satisfied. 
Constraints and objectives may be fuzzily described. Hierarchical optimization or multilevel 
programming (MLP) techniques are extensions of Stackleberg games for solving 
decentralized planning problems with multiple decision makers (DMs) in a hierarchical 
organization. Bilevel programming problem (BLPP) is a special case of Multilevel 
programming problems (MLPPs) of a large hierarchical decision system. Bilevel organization 
has following common characteristics: two decision makers namely, upper level decision 
maker (ULDM) and lower level decision maker (LLDM) are located at two different levels; the 
execution of decision is sequential, from upper level to lower level; each DM independently 
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controls only a set of decision variables and is interested in optimizing his or her objective 
functions. Although ULDM independently optimizes his or her own objective functions, the 
decision may be affected by the reaction of the LLDM. Therefore, decision dead lock arises 
frequently in the decision making situation. 

The formal formulation of the linear BLPP is defined by Candler and Towmsly [9] as 
well as Fortuny-Amat and McCarl [10]. During the last three decades, BLPP as well as MLPP 
in general for hierarchical decentralized planning problems have been deeply studied in [1-
5, 7-11, 13, 17-22] and many methodologies have been proposed to solve them potentially 
such as economic systems, government policy, warfare, etc. The classical approaches 
developed so far, for BLPPs have been surveyed by Wen and Tsu [22].  Most of these 
methods are based on vertex enumeration [8] and transformation approach [9]. The former 
is to seek a compromise vertex by simplex algorithm based on adjusting upper level control 
variables. It is rather inefficient, especially for large size problems. The latter involves 
transforming the lower level programming problem to be constraints of the upper level by its 
Kuhn-Tucker (K-T) conditions or penalty function. Due to the presence of non-linear or 
Lagrangian terms appearing in the constraints, the auxiliary problems become complex and 
sometimes unmanageable. These methods are suitable for crisp environment. Sakawa et al. 
[17] presented an interactive fuzzy mathematical programming for linear MLPP with fuzzy 
parameters. Lai [11] at first developed an effective fuzzy approach by using the concept of 
tolerance membership functions for solving MLPPs in 1996.  Shih et al. [18] extended Lai’s 
concept by using non-compensatory max-min aggregation operator for solving MLPPs. Shih 
and Lee [19] further extended Lai’s concept by introducing the compensatory fuzzy operator 
for solving MLPPs. Sinha [20] studied alternative MLP technique based on fuzzy mathematical 
programming (FMP). The basic concept of these fuzzy approaches is almost same and re-
evaluation of the problem repeatedly by redefining the elicited membership values is 
essentially needed in the solution search process to obtain a satisfactory solution. So, 
computational load is also inherently involved in the fuzzy approaches developed so far. 
Pramanik and Roy [15] proposed fuzzy goal programming (FGP) approach to MLPPs using 
deviational variables.  

Pramanik and Roy [16] proposed FGP approach for solving multi-objective 
transportation problem with fuzzy parameters.  Pramanik and Roy [14] also developed 
priority based FGP approach for solving multi-objective transportation problem with fuzzy 
parameters. In this paper, FGP due to Pramanik and Roy [14, 16] is slightly modified and 
applied for solving BLPP with fuzzy parameters. Three FGP models are formulated for solving 
BLPPs. Distance function is used for identifying which FGP model offers better optimal 
solution.       

 

2. Preliminaries 
 
Some basic definitions are here given that will be used in the paper. 

Definition 2.1 A fuzzy set 
~

  in  is defined by 
~

  = {x, ~


 (x) x  }, where 

~


 (x):    [0, 1] is called the membership function of 
~

  and ~


 (x) is the degree of 

membership to which x
~

 . 
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Definition 2.2 Union of two fuzzy sets 
~

  and 
~

 with respective membership 

functions ~


 (x), ~


 (x) is defined by a fuzzy set 
~

C  whose membership function is defined by 

~~
Β∪Α

μ (x) = ~
 C

 (x) = max [ ~


 (x), ~


 (x)], x  . 

Definition 2.3 Intersection of two fuzzy sets 
~

  and 
~

  with respective membership 

functions ~


 (x), ~


 (x) is defined by a fuzzy set 
~

C whose membership function is defined 

by ~~


 (x) = ~
 C

 (x) = min [ ~


 (x), ~


 (x)], x  . 

Definition 2.4  The -cut of a fuzzy set 
~

  of   is a non-fuzzy set denoted by 

 is defined by a subset of all elements x   such that their membership functions exceed 

or equal to a real number  [0, 1), i.e.  =   



 


x),1,0[,x:x ~ . 

 

3.  Formulation of fuzzy goal programming having fuzzy parameters 
 
Consider the following fuzzy optimization problem: 

Minimize
~

    = 


 





 

~~

2

~

1 C,...,C,C    (1)  

subject to  S = {n  0,
~~

 },  (2)        

where  K ..., 2, 1, kC
~

k   are n-dimensional vector, 
~

  is an m-dimensional vector, 

~

  is an m  n matrix, and
~

kC ,
~

 , and 
~

  are fuzzy numbers. Here, the symbol denotes 

respectively , =, and . = (X1, X2, …, Xn)
T. Consider that the problem represented by (1) 

has fuzzy coefficients, which have possibilistic distributions. Assume that 


 be a solution of 

(1) where )1,0[ represents the level of possibility at which all fuzzy coefficients is feasible. 

 
 

Let 





 ~

R


be the  -cut of a fuzzy number 
~

R defined by  

  





 ~

R


=






 






 )1,0[, r)(RSupp r ~

R

~

   (3) 

where 





 ~

RSupp  is the support of 
~

R . Let 
L~

R 









and 
U~

R 









 be the lower bound 

and upper bound of the  -cut of 
~

R respectively such that 
L~

R 









 





 ~

R



U~

R 









 (4) 
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 Then, for a prescribed value of , for minimization-type objective function,  k

~

 

(k = 1, 2, …, K) can be replaced by the lower bound of its -cut i.e.  

 
L

k

~







 



= j

n

1j

L~

kjC 











  (5)  

Similarly, for maximization-type objective function,  k

~

 (k = 1, 2, …, K) can be 

replaced by the upper bound of its -cut i.e.   
U~

k 





 



= j

n

1j

U~

kjC 











  (6)  

For inequality constraints 
~

i

n

1j
j

~

ij 


, i = 1, 2, …, m1,   (7)  

and  ,
~

i

n

1j
j

~

ij 


 i = m1+1, …, m2,   (8) 

can be rewritten by the following constraints: 

j

n

1 j

U~

ijA 












L~

i 








, i = 1, 2, …, m1   (9)  

j

n

1 j

L~

ijA 











  
U~

i 








, i = m1+1, …, m2  (10)  

For fuzzy equality constraints 
~

i

n

1j
j

~

ij 


 i = m2+1, …, m,   (11)  

can be replaced by two equivalent constraints 

j

n

1 j

L~

ijA 











  
U~

i 








    (12) 

and  j

n

1 j

U~

ijA 












L~

i 








   (13)  

For proof of equivalency of (11) with (12) and (13), see Lee and Li [12].  
Therefore, for a prescribed value of , the problem represented by (1) can be 

transformed to the following problem: 

Minimize  
L

k

~













= j

n

1j

L~

kjC 











, k = 1, 2, …, K,    (14) 

subject to j

n

1 j

U~

ijA 












L~

i 








, i = 1, 2, …, m1, m2+1, …, m,  (15) 

j

n

1 j

L~

ijA 












U~

i 








, i = m1+1, …, m2, m2+1, …, m,    (16)  

Xj 0, j = 1, 2, …, n.         (17)  
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For simplicity, denote the system constraints (15), (16) and (17) as S`. 
For a prescribed value of , the problem (14) reduces to a deterministic linear 

programming problem with multiple objectives, which can be solved by applying the FGP 
proposed By Pramanik and Roy [14, 16].   

The resulting membership functions for minimization-type objective functions are 
defined as: 

  kk
  = 

 

    O
kk

n

1 j
j

L~

kjk C













 















, k = 1, 2, …, K, (18) 

where the aspired level  Ok


 and highest acceptable level  k


 are ideal and 

anti-ideal solutions, respectively, which can be obtained by solving each of the following 
problem independently: 

 O
k


= j

n

1j

L

kj

~

S`
CMinimize  












,        (19) 

 k


= j

n

1j

U

kj

~

S`
CMaximize  












, k = 1, 2, …, K.    (20)  

For maximization-type objective function, ideal and anti-ideal solutions can be 
similarly obtained. 

Assume that all of the fuzzy coefficients are trapezoidal fuzzy numbers. Trapezoidal 

fuzzy number 
~

R  can be defined as: 
~

R = (r(1), r(2), r(3), r(4)) and the membership function of the trapezoidal fuzzy number 
(see Figure1) will be interpreted as follows: 

 r~
R

  = 














































(4)

(4)(3)
(3)(4)

(4)

(3)(2)

(2)(1)
(1)(2)

(1)

(1)

rr,0

,rrr,
rr

rr

,rrr,1

,rrr,
rr

r-r

,rr,0

     (21)  

So, an -cut of 
~

R [12] can be expressed by the following interval  







 ~

R


=



























U~L~

R,R


=             434112 r )r(r,r)rr(    (22)  
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 r~
R

  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Trapezoidal fuzzy number 
~

R = (r(1), r(2), r(3), r(4)) 

It is to be noted that when r(2)
 = r(3), 

~

R  transforms into  the triangular fuzzy number, 
specified by  (r(1), r(2)

 = r(3), r(4));  
 

        r~
R

  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Triangular fuzzy number 
~

R = (r(1), r(2)= r(3), r(4)) 
 
For given value of , the main interest of the decision maker is to maximize the 

degree of membership function of the objectives and constraints to the respective fuzzy goals 
i.e.  

Maximize    kk
         (23) 

subject to    0    
kk   1,       (24) 

 S`          (25) 
Here one can adopt Bellman- Zadeh’s [6] fuzzy decision based on minimum 

operator.  

2r  3r 4r
1r  

r(1) r(4)r(2) = r(3)
0 

1

0 

1 
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D ( ) = 
K

1k 
   kk

 ,  S`      (26) 

 
The problem (23) can be transformed to the following problem: 
Max            (27)

  

    kk
 , k = 1, 2, … , K,       (28) 

 S`          (29) 

  kk
 [0, 1]         (30) 

where  represents minimal acceptable degree of objectives. 
 
The problem (27) can be transformed into linear goal program. The highest value of 

a membership function is 1. So for the defined membership functions in (27), the flexible 
membership goals having the aspired level unity can be represented as:  

   kk
  + 

kD - 
kD = 1, k =1, 2, ..., K.     (31) 

Here 
kD , 

kD  are negative and positive deviational variables with 
kD  

kD = 0. (32) 

 Any positive deviation from a fuzzy goal implies the full achievement of the 
membership value unity. Therefore, we assign only negative deviational variables in the 
achievement function. Therefore, (31) can be written as  

     kk


 + 
kD = 1       (32) 

Pramanik and Roy [15] used inequality sign for FGP model that is      kk
 + 


kD   1  for dealing with multilevel programming problem. Since 

kD  0 and there is no 

possibility of positive deviation, 
kD = 0. Therefore, we omit the extra positive deviational 

variable and use equality sign as (32).  
Under the framework of minsum goal programming, the FGP model of the problem 

can be explicitly formulated as: 
Model (1): 

Minimize             (33) 

subject to 

 

 

    O
kk

n

1 j
j

L~

kjk C

























 





 + -
kD  = 1, k = 1, 2, …, K, (34) 

j

n

1 j

U~

ijA 












L~

i 








, i = 1, 2, …, m1, m2+1, …, m,   (35) 

j

n

1 j

L~

ijA 












U~

i 








, i = m1+1, …, m2, m2+1, …, m,    (36) 

λ  -
kD , k = 1, 2, …, K,        (37)  

Xj 0, j = 1, 2, …, n,        (38) 
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-
kD   0, k = 1, 2, …, K.       (39)  

Model (IIa): Minimize   = ( ∑  D  w
K

1k 

-
k

-
k


)     (40)   

and Model (IIb): Minimize  = ∑D
K

1k

-
k


      (41) 

subject to the constraints given by (34), (35), (36), (38), and (39) 
Using the interval expression (22), the problem (33) can be written as: 

Minimizeλ  (42) 
subject to 

         
    O

kk

n

1j
j

1
kj

2
kj

1
kjk .CCC










 






 + -
kD  = 1, k = 1, 2, …, K,  (43) 

               m, , 1,m , m , 1,  i, 21
1

i
2

i
1

ij
3
 ij

4
 ij

4
 ij      (44) 

               m, , 1,m ,m , , 2, 1,m  i, 221
3

i
4

i
4

ij
1
 ij

2
 ij

1
 ij  (45) 

   -
kD , k = 1, 2, …, K,          (46) 

Xj   0, j = 1, 2, …, n,                                                                           (47)                         
-
kD  0, k = 1, 2, …, K.                (48) 

Similarly, using the interval expression (22), the problem (40) and (41) can be written 
as 

Minimize   = (


K

1k 

-
k

-
k  D  W )       (49) 

and Minimize  = 



K

1k
k D         (50)  

subject to the constraints  given by (43), (44), (45), (47), and (48). 

Numerical weight 
kW associated with negative deviational variable is defined by  


kW  = 1/     O

kk   
, k = 1, 2, …, K     (51)  

 

In Model (IIa), numerical weight 
kW  (k = 1, 2, …, K)is the reciprocal of the 

admissible violation constant. The numerical weight associated with negative deviational 
variable represents the relative importance of achieving the aspired level of the fuzzy goal. 

The larger admissible violation of constants     O
kk   

 indicates less important k-th 

fuzzy goal. i.e. the larger numerical weight 
kW  = 1/     O

kk   
, (k = 1, 2, …, K) 

indicates the more important of the k-th fuzzy goal.  When the numerical weights associated 
with the negative deviational variables are all equal to unity, then Model (IIa) and Model (IIb) 
become identical. Therefore, Model (IIb) is a special case of Model (IIa). 
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4. Formulation of BLPP 
 
A BLPP can be defined as a two- person game with perfect information in which each 

DM moves sequentially from upper level to lower level. This problem has a nested 
hierarchical structure with two levels of DMs. We consider a BLPP having maximizing type 
objective function at each level. Mathematically, the problem can be stated as: 

 
1

X Maximize 1


  = 11

~

C 1X  + 12

~

C 2X            (Upper level DM’s problem)  (52)  

 
2

X Maximize 2


  = 21

~

C  1X  + 22

~

C 2X            (Lower level DM’s problem) (53) 

subject to 

1

~

 1X  + 2

~

 2X   
~

         (54) 

1X   0 , 2X   0 ,                (55) 

1X  = {X 1
1 , X

2
1 , …, X 1

1
 }T : decision variables under the control of ULDM  

2X  = {X 1
2 , X

2
2 , …, X 2

2
 }T: decision variables under the control LLDM 

  = (Z1, Z2)
 T, and T denotes transposition; 

~

C = 







21

~

11

~

C

C
      








22

~

12

~

C

C
  is the vector of 

coefficient vectors represented by fuzzy parameters. 

Where 1

~

  is M  N1 and 2

~

  is M  N2 matrix, B is the M component column 

vector. X  = 1X   2X  is the set of decision vector, N = N1 + N2, total number of decision 

variables in the system and M is the total number of the constraints of the problem. Z1, Z2 
are linear and bounded.  

 
4.1. Characterization of Membership Function of BLPP 
In the decision making situation, each DM is interested in maximizing his or her own 

objective function. So, the optimal solution of each DM when calculated in isolation would 
be considered as the aspiration level of each of the respective fuzzy objective goals. For a 
prescribed value of , to construct membership function for maximization-type objective 

function,    i

~

 (i = 1, 2) can be replaced by the upper bound of its -cut i.e. 

  
U~

i 





 



= j

2

1j

U~

ijC  











 , i= 1, 2     (56) 

For inequality constraints, 1

~

 1X  + 2

~

 2X   
~

 , we write 

    
L

1

~











1X  + 
L

2

~











2X   
U~











     (57) 

Therefore, for a prescribed value of , the problem reduces to the following 

problem: 
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1

Maximize


 
U~

1 





 



=
1

Maximize


 j

2

1j

U~

1jC 











,    (58)  

2

Maximize


 
U~

2 





 



 =
2

Maximize


j

2

1j

U~

2jC 











,    (59) 

 subject to  

   
L

1

~











1X  + 
L

2

~











2X   
U~











      (60) 

1X   0 , 2X 0 ,        (61) 

 
For simplicity, denote the system constraints (60) and (61) as S.  
For a prescribed value of , the fuzzy BLPP reduces to deterministic BLPP, which can 

be solved by using FGP models discussed in section 3.  

Let (
1
2

1
1 X,X ;    Z

U

1


) and (
2
2

2
1 X,X ;    Z

U

2


) be the individual optimal decision 

of the DMU and DML respectively when calculated in isolation,  

where    Z
U

1


=
S

Maximize  
U~

1 





 



= 
S

Maximize j

2

1j

U~

1jC 











  (62)  

and    Z
U

2


=
S

Maximize   
U~

2 





 



 =
S

Maximize  j

2

1j

U~

2jC 











 (63)  

If the individual optimal solutions are identical, then optimal compromise solution is 
automatically reached. However, this rarely happens due to the conflicting objectives. Then 
the fuzzy objective goals of the ULDM and LLDM appear as: 

 
U~

1 





 



~
    Z

U

1


,  
U~

2 





 



~
    Z

U

2


;  

To formulate membership functions for the maximization type objective functions, we 
define: 

   Z
LW

1


= 

S
Minimize  

L~

1 





 



= 
S

Minimize j

2

1j

L~

1jC 











  (64) 

   Z
LW

2


= 

S
Minimize  

L~

2 





 



= 
S

Minimize j

2

1j

L~

2jC 











   (65) 

where    Z
U

i


,    Z
LW

i


, (i = 1, 2) are best and worst or ideal and anti-ideal 

solutions respectively. 
Then the resulting membership functions can be defined as: 

  U

ii 


=

    
    

   
      

     































LW
i

U

i

UB
i

U

i

LW
iLW

i

UB
i

LW
i

U

i

UB
i

U

i

if ,0

if ,

 if ,1











, (i=  1, 2)  (66) 
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Figure3. Membership function for objective function  
U~

i 





 



 (i = 1, 2). 

 
In BLPP, Mishra [13] considered arbitrary relaxations on decision variables provided 

by DMs by providing preference bounds on the decision variables. In the proposed 
approach, DMs provide the upper and lower bounds on the decision variables under their 

control. Suppose   i
B
i R ,   i

B
i R  (i = 1, 2) are the upper and lower bounds of 

decision vector provided by the i-th level DM where 
B
i is the individual best solution when 

calculated in isolation. Here, 

iR and 


iR  are the negative and positive tolerance vectors, 

which are not necessarily same. Generally i  lies between   i
B
i R  and   i

B
i R . DMs 

may prefer to shift the range of  
B
i  which may be left of 

B
i  or right of 

B
i  only 

depending on the needs and desires of the level DMs in the decision making situation.  For 

example, if iX  = 0 , then iX  should lie on the right of 0 .  Then DM should assign 

iR   

0 , 

iR    0  and 


iR   


iR .If the DM wants the shift towards left of 

B
i , then 


iR  should 

be assigned positive value while 
+
iR  should be assigned a negative value i.e. 


iR   0 , 


iR  

 0  and 

iR   


iR . Similarly, if the shift is required to right of

B
i , then DM should assign 


iR   0 , 


iR    0  and 


iR   


iR .  

Therefore,   i
B
i R Xi    i

B
i R , (i=1, 2)    (67) 

 
4.2. Formulation of FGP Model 
The proposed FGP formulation can be presented as: 
Model (I): 

Minimize            (68) 

subject to 

O 

1 

 UB
i


    LW

i


   

  UB
i X

  

  U

ii 

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  




 

 U

ii  + -
iD  = 1, (i = 1, 2)      (69)  

  i
B
i R Xi    i

B
i R , (i =1, 2)      (70)  

L

1

~











1X  +
L

2

~











2X   ,
U~











      (71) 

   -
iD  , (i = 1, 2)        (72) 

-
iD 0 , 1X   0 , 2X   0        (73)  

Model (IIa): Minimize   = 


2

1 i

-
i

-
i  D  W       (74)  

and Model (IIb): Minimize  = 


2

1i

-
iD       (75)  

  subject to  the constraints   (69), (70), (71), (73) 

The numerical weight -
iW =1/[    LW

i

UB
i 


] associated with negative 

deviational variable is determined as discussed in section 3.  By solving FGP formulations 
(68), if the DMs are satisfied with this solution, then a satisficing solution is reached. 
Otherwise, the DMs should provide new tolerance limits for the control variables until a 
satisficing solution is reached. In general, considering a set of possible relaxation offered by 
DMs, the solution becomes satisficing for both level DMs. Similarly, other two FGP 
formulations are solved. 

 

5. Selection of compromise solution  
 
The concept of utopia point (the ideal-point) and the use the distance function for 

group decision analysis has been studied by Yu [23]. Since the aspired level of each of the 
membership goals is unity, the point consisting of the highest membership value of each of 
the goals would represent the ideal point. The distance function can be defined as:  

LP
 =     p/1K

1k

pU

kk∑ -1 



 




, p ≥ 1; (k = 1, 2, …, K).       (76) 

  Where   




 

U

kk


  is the membership value for the solution . Here, we 

consider p =1, 2,   only. Now, it can be easily realized that the solution for which Lp is 
minimum would be the most satisfactory solution. Here, distance function is used only to 
identify which FGP model (Model I, Model IIa, Model IIb) gives better optimal solution.   
 

6. FGP algorithm for BLPP with fuzzy parameters 
 
Step1. For specified value of  , to construct membership functions for the objective 

functions of the DMs, the upper and lower bounds of their  -cuts are defined. Similarly, for 

inequality constraints, upper and lower bounds of their  -cuts are defined. 

Step2. Calculate the individual maximum and minimum values for lower and upper 
 -cuts of the objective functions subject to constraints (60) and (61).  
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Step3. Determine the weight -
iW =1/[    LW

i

UB
i 


], (i = 1, 2).  

Step4.  Construct the membership function   




 

 U

ii , (i = 1, 2). 

Step5. Consider the preference bounds on the decision vectors provided by the 

decision makers under their control such that   i
B
i R Xi    i

B
i R , (i =1, 2). 

Step6. Formulate the three FGP models. 
Step7. Solve the three FGP models. 
Step8. Compute the distance function for optimal solution obtained from three 

models. 
Step9. Find the optimal solution for which the distance function is minimal. This 

optimal solution will be the compromise solution for the BLPP. 
 

 
7. Numerical Example 

4

~

3

~

2

~

1

~

1
X,X

2465Maximize
21

Z                       (Upper-level) 

4

~

3

~

2

~

1

~

2
X,X

4298ZMaximize
43

                       (Lower-level) 

subject to  

0,,

3022

35242

40323

432,1

~

4

~

32

~

1

~

4

~

32

~

1

~

~

4

~

32

~

1

~








        (77) 

where all the fuzzy numbers are assumed as triangular  fuzzy numbers and are given 
as follows: 

)45,40,35(0
~

4),37,35,33(5
~

3
),32,30,28(0

~
3),10,9,8(9

~
),10,8,6(8

~
),7,6,5(6

~
),6,5,4(5

~
),5,4,3(4

~
),4,3,2(3

~
),3,2,0(2

~







 

By replacing the fuzzy coefficients by their  -cuts, problem (77) can be written as  

 

  4X)5(3X)3(2X)10(1X)210( Maximize

X)3(X)5(X)7(X)6( Maximize 

U
2

4,3

4321
U

1
2,1
















 

subject to  
(2+ ) X1 +2 X2 +X3+ ((2+ ) X4 45-5  

2  X1+(3+ )X2 +X3+2 X4 37-2  

X1 +2 X2 +X3+2 X4 32-2  

X1, X2, X3, X4 0 
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For,   = .5, let the decision makers provide the preference bounds to the decision 

variables  
0   X1 15,  
0   X2 4,  
0   X3 10,   
0  X2 4 
Then FGP Model (1) offers the solution  

* =0.1220651, *
1X  =11.57139, 

*
2X = 4, *

3X = 9.571533, *
4X = 0 with Z *

1 = 

132.7145, Z *
2 =166.0713, 

1
 = 0.8779349, 

2
 = 0.8779349, L1= 0.2441301, L2 = 

0.1726261, ∞L = 0.1220651            

 
 
 
 
FGP Model (IIa) offers the solution 

 * = 0.1422829E-02, *
1X =11.4, 

*
2X = 4, *

3X = 10, *
4X = 0; 

 Z *
1 = 133.7, Z *

2 =165.6, 
1

 = 0.884454, 
2

 = 0.8754433, L1= 0.2401026, L2 = 

0.1698977, ∞L =0.1245567.          

FGP Model (IIb) offers the solution 

 *  = 0.2401026, *
1X =11.4, 

*
2X = 4, *

3X = 10, *
4X = 0; 

 Z *
1 = 133.7, Z *

2 =165.6, 
1

 = 0.884454, 
2

 = 0.8754433, L1= 0.2401026, L2 = 

0.1698977, ∞L =0.1245567.          

Table1. Comparison of distances for the optimal solutions of example 1 based on 
FGP Models 

Meth
od 

Z *
1 , Z *

2  
1Ζ

μ ,    
2Ζ

μ  L1 

L

2 

∞L
 

FGP 
Mod

el (I) 

  132.7145, 
166.0713    

.8779349, 
.8779349 

.24
41301 

.
172626
1 

.1
220651 

FGP 
Mod

el (IIa) 
133.7, 165.6 

.884454, 
.8754433 

.24
01026 

.
169897
7 

.1
245567      

FGP 
Mod

el (IIb) 
133.7, 165.6 

.884454, 
.8754433 

.24
01026 

.
169897
7 

.1
245567      

 
On comparing L1, and L2 we see that FGP model (IIa) and (IIb) offer better optimal 

solution. On comparing, ∞L  we see that FGP model (I) offers better optimal solution. 
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8.  Conclusions 
 
In this paper, FGP due to Pramanik and Roy [14, 16] is slightly modified and applied 

for solving BLPPs with fuzzy parameters. It is an alternative way to solve BLPPs with fuzzy 
parameters. Distance function is used to identify which FGP model offer better compromise 
optimal solution. The proposed approach can be extended to optimization problems in 
different areas, such as decentralized planning problems, agricultural planning problems 
and other real world multi-objective programming problems involving fuzzily described 
different parameters. The proposed approach can also be extended for multilevel multi-
objective programming problem with fuzzy parameters. 
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