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Abstract:  
This paper introduces the two-sample Anderson-Darling (AD) test of goodness of fit as a tool 
for comparing distributions, response time distributions in particular. We discuss the 
problematic use of pooling response times across participants, and alternative tests of 
distributions, the most common being the Kolmogorov-Smirnoff (KS) test. We compare the KS 
test and the AD test, presenting conclusive evidence that the AD test is more powerful: when 
comparing two distributions that vary (1) in shift only, (2) in scale only, (3) in symmetry only, or 
(4) that have the same mean and standard deviation but differ on the tail ends only, the AD 
test proves to detect differences better than the KS test. In addition, the AD test has a type I 
error rate corresponding to alpha whereas the KS test is overly conservative. Finally, the AD 
test requires less data than the KS test to reach sufficient statistical power. 
 
Key words: Anderson-Darling test; Kolmogorov-Smirnoff test; Comparing distributions 
 

Introduction 
 
The motivation for this article lies in the authors’ own research on redundancy gain 

(Miller, 1982): we investigate response time (RT) distributions in an object recognition task, 
varying the number of redundant attributes identifying an object as a target (Engmann & 
Cousineau, submitted). We analyze each participant's RTs individually, and therefore needed 
a test that would allow analysis of a whole distribution, not just the mean and variance. We 
wanted a test that is sensitive to changes in shape and asymmetry. After trying different 
goodness-of fit tests, we finally settled on the Anderson-Darling test, a powerful tool for 
comparing data distributions. In this paper we wish to introduce the two-sample version of 
the Anderson-Darling (AD) test and compare its power to the Kolmogorov-Smirnoff (KS) test.  



  
Quantitative Methods Inquires 

 
2

The AD test is commonly used in engineering, but little known in Cognitive 
Psychology, despite its advantages for this field. This test is especially useful if there is not a 
lot of data available in the samples to be compared, and when the analysis should extend 
beyond distributions’ means, taking into account differences in shape and variability as well 
as the mean of the given distributions. The AD test is non-parametric and can be applied to 
Normal, Weibull, and other types of distributions (Isaic-Maniu, 1983, Cousineau, Brown & 
Heathcote, 2004, Gumbel, 1958, Galambos, 1978). It is especially useful to analyze 
response time distributions, as it allows a participant-by-participant analysis. 
 
Why combining response time distributions across participants is problematic 

When comparing response time (RT) distributions for different experimental 
conditions, it can be quite difficult to obtain a sufficient amount of data in each condition for 
a reliable analysis. There is a trade-off between the time participants take for a given 
experiment and the amount of data per condition. Combining the response times of several 
participants seems to be, at first glance, an elegant solution to avoid this trade-off. However, 
on closer inspection, combining RT distributions presents several difficulties. 

The most intuitive solution, simply pooling all RTs from all participants together per 
condition, would produce uninterpretable distributions due to inter-participant variability: 
such RT distributions would not only be influenced by the characteristics of the experimental 
condition under which they are produced, but also by individual differences. Participants can 
have faster or slower motor reactions, or object recognition speed – the possibilities to 
produce variance in RT distributions are endless – such that variance between participants 
will be larger than variance due to experimental manipulation. Therefore, simple pooling of 
different RT distributions will flatten the shape of the final distribution, or, if there are not 
many participants, lead to a bi- or multimodal distribution.  

A technique to avoid some of these problems was proposed by Vincent (1912; see 
also Rouder & Speckman 2004). The so-called Vincentizing is the most popular technique to 
combine response time distributions. It involves dividing each distribution into a certain 
number of quantiles, and then averaging the nth quantiles of each distribution. The 
advantage of using this technique is that the resulting “average” RT distribution takes into 
consideration the relative position of each response time in relation to the other RTs of a 
specific participant, i.e. minimal RTs are averaged with other minimal RTs; RTs at the peak of 
each participant’s distribution are averaged with other peaks; etc. This avoids a flattening or 
multi-modality of the Vincentized distribution. 

However, Vincentizing distorts the shape and symmetry of individual distributions 
(Thomas & Ross, 1980). If an RT distribution reflects one or more underlying processes that 
contribute to the RT, then this information is essential for analysis. A Vincentized distribution 
tends towards normality, whereas asymmetry is a universal finding in RT empirical data 
(Logan, 1992; Rouder, Lu, Speckman, Sun & Jiang, 2005). Possibly relevant information 
about a RT distribution, such as its degree of symmetry, gets lost when Vincentizing.  

Vincentizing is the best technique of combining RT distributions available right now. 
However, even Vincentizing does not render an unbiased and exact analysis of RT 
distributions, and research for a better method is in progress, but has not been conclusive so 
far (Lacouture & Cousineau, in press). Therefore, we need to consider methods available for 
participant-by-participant analysis. 
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Different methods of comparing distributions participant-by-participant 
The most common methods of comparing two or several distributions, the t-test or 

the ANOVA, render a judgment of goodness of fit based on the mean and variance of 
distributions under comparison. They do not take shape and symmetry into account, which is 
not specific enough in a lot of cases, for reasons mentions in the previous section. Also, both 
tests are parametric, expecting a normal distribution, whereas RTs have a shape close to the 
Weibull or the Lognormal distribution. 

When investigating redundant target recognition RTs, several authors used multiple 
t-tests on quantiles (Miller, 1982; Mordkoff & Yantis, 1991, 1993, among others). Quantiles 
(e. g. the 5th percent quantiles) are computed for each participant in the two conditions 
whose distributions are to be compared. These quantiles are then tested for equality using a 
t-test. This procedure is replicated for all quantiles at given intervals (e. g. the 10 th, the 15 th, 
etc. percent). This method allows an estimate of where RT distributions of all participants 
differ significantly. It keeps individual participants’ data separate, and analyses more than 
distribution means.  

However, sample size for each t-test is only as large as the number of participants in 
an experiment; therefore statistical power may not be sufficient, especially if the effect size is 
not very large to begin with. Additionally, between-participant variability might be larger 
than between-condition differences. Finally, the data at one time point are highly correlated 
with the data at the previous and following time point, influencing the probability of a type I 
error rate.  

There are several types of non-parametric or distribution-free (they neither depend 
on the specific form, nor on the value of certain parameters in the population distribution; 
Massey, 1951) goodness of fit tests that either test if a sample comes from a given 
theoretical distribution, or if two samples come from the same underlying distribution. The 
most well-known in psychology, although used more frequently as a test of independence 
than goodness of fit, is the Pearson’s Chi square (χ2) test (Chernoff & Lehmann, 1954). The 
χ2 test operates on binned frequency distributions, not on probability distributions, and does 
not give precise results when bin size is too narrow. It is therefore less adapted and less 
powerful than other tests for comparison of distributions, such as the Kolmogorov-Smirnoff, 
Cramer-von Mises, Kuiper, Watson or Anderson-Darling test (Stephens, 1974). All of the 
above tests have more or less the same underlying structure, or are adaptations of one 
another for different sample sizes or situations, some being more powerful for detecting 
changes in mean, others in variance (Stephens, 1974).  

The Kolmogorov-Smirnoff (KS) test is the most well-known of these tests, and the 
most commonly used in psychology. The KS test's statistical power is greater than that of the 
χ2-test, it requires less computation, and unlike the latter, it does not lose information by 
binning, as it treats individual data separately (Massey, 1951; Lilliefors, 1967). However, it is 
applicable neither for discrete distributions, nor in cases where not all parameters of a 
theoretical distribution are known and therefore, they have to be estimated from the sample 
itself. 

In this article, we will concentrate on a comparison of the Kolmogorov-Smirnoff (KS) 
and the Anderson-Darling (AD) test. The former test is already commonly used in the field of 
psychology, and both are non-parametric, distribution-free, do not require normality, and 
are best adapted to the context of RT distribution analysis.  
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Comparison of Kolmogorov-Smirnoff and Anderson-Darling tests 
 
Both the KS and the AD test are based on the cumulative probability distribution of 

data. They are both based on calculating the distance between distributions at each unit of 
the scale (i.e. time points for RT distributions).  

 
Kolmogorov-Smirnoff Test 

The Kolmogorov-Smirnoff (KS) test was first introduced by Kolmogorov (1933, 1941) 
and Smirnoff (1939) as a test of the distance or deviation of empirical distributions from a 
postulated theoretical distribution. The KS statistic for a given theoretical cumulative 
distribution F(x) is 
 

  (1) 

 
where F(x) is the theoretical cumulative distribution value at x, and Fn(x) is the empirical 
cumulative distribution value for a sample size of n. The null hypothesis that Fn(x) comes 
from the underlying distribution F(x) is rejected if KSn is larger than the critical value KSα at a 
given α (for a table of critical values for different sample sizes see Massey, 1951; less 
conservative critical values exist if the test distribution is the normal distribution, Lilliefors, 
1967, or the exponential distribution, Lilliefors, 1969). This means that a band with a height 
of KSα is drawn on both sides of the theoretical distribution, and if the empirical distribution 
falls outside that band at any given point, the null hypothesis is rejected. The KS-statistic is 
sometimes abbreviated as D-statistic. For reasons of clarity we will use the former term 
throughout this article. 

The two-sample version of the KS test generalizes to 
 

  (2) 

 
where Fn(x) and Fn'(x) are two empirical cumulative distribution values at time point x, based 
on data sets of size n and n' respectively. The null hypothesis that Fn(x) and Fn'(x) come from 
the same underlying distribution is rejected if KSn n' is larger than the critical value KSα at a 
given α (for a table of critical values for the two-sample KS test, see Massey, 1951).  

The main advantage of the KS test is its sensitivity to the shape of a distribution 
because it can detect differences everywhere along the scale (Darling, 1957). Also, it is 
applicable and dependable even for small sample sizes (Lilliefors, 1967).  Therefore, a KS 
test is advised in the following experimental situations: (1) when distribution means or 
medians are similar but differences in variance or symmetry are suspected; (2) when sample 
sizes are small; (3) when differences between distributions are suspected to affect only the 
upper or lower end of distributions; (4) when the shift between two distributions is 
hypothesized to be small but systematic; or (5) when two samples are of unequal size. 

The KS test is fairly well known in the field of psychology, and has been used for a 
number of different experimental contexts other than a comparison of response times, such 
as a comparison of circadian rhythm (Pandit, 2004), an evaluation of exam performance 
(Rodriguez, Campos-Sepulveda, Vidrio, Contreras & Valenzuela, 2002), or a comparison of 
economic decision-making (Eckel & Grossman, 1998). 
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Initially, the authors also used the KS test to compare the response times of 
participants in an object recognition task where objects could be defined by one, two or 
three target attributes (Engmann & Cousineau, submitted). However, we began looking for 
an alternative for the following reasons. First, participants were faster at recognizing objects 
defined by several target attributes, but the effect was very small. Second, we wanted to 
compare our data to a model which made certain assumptions about minimal response 
times, as well as scale and symmetry of response time distributions. We therefore needed a 
test that would detect small differences at any time point along the distribution, although 
sample size was not large (48 to 144 per condition). Since we assumed that a substantial 
part of the effect would show itself in the minimal response times, we needed a test that was 
especially sensitive to the extrema of a distribution. We finally settled on the AD test as it 
fulfilled these criteria better than the KS test. 
 
Anderson-Darling Test 

The Anderson-Darling test was developed in 1952 by T.W. Anderson and D.A. 
Darling (Anderson & Darling, 1952) as an alternative to other statistical tests for detecting 
sample distributions’ departure from normality. Just like the KS test, it was originally 
intended and used mainly for engineering purposes.  
The one-sample AD test statistic is non-directional, and is calculated from the following 
formula: 
 

  (3) 

 
where {x(1) < ... < x(n)} is the ordered (from smallest to largest element) sample of size n, and 
F(x) is the underlying theoretical cumulative distribution to which the sample is compared. 
The null-hypothesis that {x(1) < ... < x(n)} comes from the underlying distribution F(x) is 
rejected if AD is larger than the critical value ADα at a given α (for a table of critical values 
for different sample sizes, see D'Agostino & Stephens, 1986). 

The two-sample AD test, introduced by Darling (1957) and Pettitt (1976), generalizes 
to the following formula: 
 

  (4) 

 
where Z(n+m) represents the combined and ordered samples X(n) and Y(m), of size n and m 
respectively, and Ni represents the number of observations in X(n) that are equal to or smaller 
than the ith observation in Z(n+m). See Pettitt (1976) for critical values depending on α and 
sample size. The null hypothesis that samples X(n) and Y(m) come from the same continuous 
distribution is rejected if AD is larger than the correspondent critical value.  

The AD test has been further generalized to a k-sample version (Scholz & Stephens, 
1987), which is especially useful to test for the homogeneity of several samples. However, 
this version will not be discussed in this article. 

Several comparisons between the one-sample AD test and other similar tests have 
been made. Anderson and Darling (1954) found that for one set of observations, the KS and 
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AD test produced the same result. Stephens (1974) compared several one-sample goodness 
of fit tests, and concluded that while all tests surpassed the χ2 test in power, the KS, AD, and 
Cramer-von Mises tests detected changes in mean better. 

The AD test has the same advantages mentioned for the KS test in the previous 
section, namely its sensibility to shape and scale of a distribution (Anderson & Darling, 1954) 
and its applicability to small samples (Pettitt, 1976). Specifically, the critical values for the AD 
test rise asymptotically and converge very quickly towards the asymptote (Anderson & 
Darling, 1954; Pettitt, 1976; Stephens, 1974). 

In addition, the AD test has two extra advantages over the KS test. First, it is 
especially sensitive towards differences at the tails of distributions (as we will show next). 
Second, there is evidence that the AD test is better capable of detecting very small 
differences, even between large sample sizes. This is one of its main advantages in the field 
of engineering. The goal of the following Monte Carlo simulations is to investigate more 
rigorously the differences in performance between the KS test and the AD test, especially 
concerning small differences between samples and sensitivity to tail differences. 

The AD test can be used in the same experimental context as the KS test, but it is not 
known in the field of psychology, the two-sample version even less than the one-sample 
version. Rare examples of use of the one-sample AD test in psychology include a test of 
normality for the distribution of judgments of verticality (Keshner, Dokka & Kenyon, 2006), 
and a test of normality of platelet serotonin level distributions (Mulder et al., 2004). Apart 
from our own studies (Engmann & Cousineau, submitted), we are not aware of any further 
examples of use of the two-sample version.  
 

Comparison of the two tests when shift, scale and symmetry are 
varied independently 

 
To compare the performance of KS versus AD test, we propose to test if the 

difference between two sets of data sampled from two minimally different distributions is 
statistically significant, according to the KS test and according to the AD test. By using 
theoretical distributions with known parameters, we are able to control the actual size of the 
difference between the two distributions. This allows us to compare the performance of both 
tests when distributions are very similar as well as when they are dissimilar. Also, this gives 
us a tool to observe the effect of change in specific parameters on the performance of both 
tests. Specifically, we can compare performance when distributions differ only at the extreme 
ends, but not around the mode, as will be done in the subsequent section.  
 
Method 

In a given simulation, we used two populations following Weibull distributions with 
three parameters, 

 D1 (α, β, γ) (5a)  
 D2 (α + Δ1, β + Δ 2, γ + Δ 3), (5b) 

where α = 200, β = 80, and γ = 2.0. These parameters are typical of speeded response time 

distributions (Heathcote, Brown & Cousineau, 2004). ∆1 varied between –60 and 60, in steps 

of 4, ∆2 varied between –30 and 30, in steps of 2, and ∆3 varied between –1.2 and 1.2, in 

steps of 0.08. In the first simulations, only one parameter varied, whereas the other two 

remained the same (∆ = 0). For each value of ∆1, while maintaining ∆2 and ∆3 at 0, a 
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sample was drawn from D1 as well as from D2. A test of significant difference (with α = 0.05) 

between D1 and D2 was then performed, using the KS test and then the AD test. This was 

repeated 10,000 times for each value of ∆1 and subsequently for each value of ∆2 and ∆3 as 

well. For each value of ∆1, ∆2 and ∆3 we were then able to calculate the probability of 

finding a significant difference between D1 and D2 for the KS test and for the AD test. This 

procedure was used for sample sizes of 16, 32 and 64, typical in experimental psychology. 

 
 

 
 

 
Figure 1. The proportion of significant differences between the two distributions for the AD 

and KS test as a function of ∆1 (changes in shift). The horizontal gray line is the 
boundary of an acceptable type I error rate for a decision criterion of 5%. Panels 
represent sample sizes 16, 32 and 64 respectively.  

 
Results 

Figure 1 shows the probability for both AD test and KS test of finding a significant 

difference between D1 and D2 when ∆1 changes, plotted along the abscissa. The three panels 

represent the different sample sizes. The probability of finding a significant difference is 

plotted as a function of ∆1. If D1 and D2 are equal (∆1 = 0), the AD test finds a significant 

difference (type I error) in 1.2% of the cases for sample size n = 16, 2.2% for n = 32, and 
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3.3% for n = 64. This is approximately the type I error usually allowed for (α). The KS test 

finds a significant difference in only 4.7% (n = 16), 5.0% (n = 32), and 5.2% (n = 64) of the 

cases. Hence, the KS test is slightly more conservative, allowing for a smaller proportion of 

type I errors. On the other hand, when ∆1 differs from zero, the proportion of type II errors is 

larger for the KS test, finding no significant difference when distributions are actually 

different.  

  

 
 
Figure 2. Absolute advantage of AD over KS test as a function of ∆1 (changes in shift). 

Panels represent sample sizes 16, 32 and 64 respectively. 
 
To illustrate the amount of gain of the AD test over the KS test more clearly, we 

calculated the difference in probability between the two tests. This was done by subtracting 

the KS-probability from the AD-probability of finding a significant difference for each value 

of ∆1. Figure 2 plots the difference as a function of change in ∆1, the panels representing 

sample sizes 16, 32 and 64 respectively. Figure 2 clearly shows that performance of the KS 

test approaches the performance of the AD test (i.e. the difference approaches zero) only for 

very large differences between distributions, or when the two distributions are equal (i.e. 

when ∆1 = 0). As values of ∆1 approach intermediate values (near  25), there is a 

systematic and constant gain, sometimes as large as 36% for the AD test over the KS test. 
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The AD test detects as much as a quarter of all differences for certain effect sizes which the 

KS test could not detect. 

Differences in performance between KS test and AD test are more pronounced for 

small sample sizes. This holds for changes in ∆1 as well as in ∆2 and ∆3, as will be shown 

next.  

 
Figure 3. The proportion of significant differences between the two distributions for the AD 

and KS test as a function of ∆2 (changes in scale). The horizontal gray line is the 
boundary of an acceptable type I error rate for a decision criterion of 5%. The 
second panel shows the absolute advantage of the AD over the KS test. 

 
Figure 3a shows the probability for both AD test and KS test of finding a significant 

difference between D1 and D2 when ∆2 changes, at a sample size of 64. When D1 and D2 
were equal (∆2 = 0), the proportion of type I errors for the AD test was 0.9% (n = 16), 2.0% 
(n = 32), and 3.3% (n = 64) respectively.  Figure 3b represents the advantage of the AD test 
over the KS test, again at a sample size of 64. For all sample sizes, the AD test performed as 
good as or better than the KS test, with a maximal advantage of 4.2% (n = 16), 4.9% (n = 
32) or 4.7% (n = 64) respectively. 

 
Figure 4: The proportion of significant differences between the two distributions for the AD 

and KS test as a function of ∆3 (changes in asymmetry). The horizontal gray line is 
the boundary of an acceptable type I error rate for a decision criterion of 5%. The 
second panel shows the absolute advantage of the AD over the KS test 
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Figure 4a shows the probability for both AD test and KS test of finding a significant 
difference between D1 and D2 when ∆3 changes, at a sample size of 64.  The curve is less 
symmetrical as ∆3 represents a change in symmetry, and the effect of a negative ∆3 is not the 
same as the effect of a positive ∆3. When D1 and D2 were equal (∆3 = 0), the proportion of 
type I errors for the AD test was 0.7% (n = 16), 1.8% (n = 32), and 2.9% (n = 64) 
respectively.  Figure 4b represents the advantage of the AD test over the KS test, again at a 
sample size of 64. For all sample sizes, the AD test performed as good as or better than the 
KS test, with a maximal advantage of 4.6% (n = 16), 4.9% (n = 32) or 4.6% (n = 64) 
respectively. 

When D1 and D2 are equal, the KS test has a slightly lower type I error rate, but as 
soon as samples differ even slightly, the AD test outperforms the KS test for the detection of 
differences in shift (∆1), scale (∆2), or symmetry (∆3).  

 

Comparison of the two tests when D1 and D2 differ in the tails only 
 
As mentioned earlier, one of the strengths of the AD test is its sensitivity to the 

extreme ends of distributions – the minima and maxima. In order to test its performance 
specifically at the extrema, we decided to compare distributions that differed only at the 
extreme ends. The degree of difference between such distributions is extremely difficult to 
compute, and much less to control. Therefore we selected six instances of two distributions 
that differ at the extrema, and compared each with a KS and an AD test. One of these 
distributions was a Weibull, the other a Normal with approximately the same mean and 
variance as the Weibull. See Table 1 for the exact parameters of each of the six sets of 
distributions used. Figure 5 shows two such pairs of distributions. Weibulls can be 
asymmetrical, whereas Normals are symmetrical, which means that an overlap can be 
obtained for large parts of the distributions, while maintaining a difference at one or both of 
the extrema. 

 
Figure 5. Weibull and Normal distributions used for evaluation of performance when 

distributions differ at tails. The full line represents the Weibull, the dotted line the 
corresponding Normal distribution. Panel A shows the pair of distributions for which 
it was least likely to detect a difference (parameters: Weibull α = 0, β = 10, γ = 
2.5; Normal μ = 8.5, σ = 4), panel B the pair for which it was most likely 
(parameters: Weibull α = 0, β = 20, γ = 1.3; Normal μ = 7.5, σ = 11.5). 
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Method 
We selected a sample of size 16 from the Weibull and the Normal in each set, tested 

them for significant difference using the KS and then the AD test. We repeated this 
procedure 10 000 times, and then calculated the probability of the AD and the KS test of 
finding a significant difference.  In all other aspects, the procedure is the same as in the 
previous section. 
 
Results 

The results are shown in Table 1, the last column representing the gain of the AD 
over the KS test. The AD test is able to detect differences in distributions better than the KS 
test, even if they are located only at the tail(s) of a distribution. 

 
Table 1. Parameters of the Weibull and Normal distributions from which samples are drawn 

for comparison. The last three columns show the probability (over 10 000 
instances) of finding a significant difference between samples, either by the AD test 
or the KS test. The last column represents the advantage of the AD over the KS test. 

 
Weibull parameters 

Normal 
parameters 

Probability of finding a 
significant difference 

 
α β γ μ σ AD test KS test AD - KS 

1 0 10 1.5 6 5.4 .200 .032 .168 
2 0 10 2.5 8.5 4 .051 .005 .046 
3 0 20 1.3 7.5 11.25 .561 .165 .396 
4 0 20 4.0 17.5 6.75 .072 .013 .059 
5 0 30 1.6 17.5 15.73 .252 .054 .198 
6 0 30 2 22.5 14 .087 .018 .069 

 

Sample size needed to reach sufficient statistical power when shift, 
scale and symmetry are varied independently 

 
Another method to assess the advantage of one statistical method over another is 

based on statistical power (Cohen, 1992). We will compare the required number of data per 
cell to reach a target power. Following Cohen (1992), we will use 80% as the target power. 
The method which requires less data to reach a statistical power of 80% is to be preferred. 

We defined the effect size for a shift relative to the standard deviation of the parent 
distribution. In the following, a small effect size is defined as a change in the shift (α) of the 
second distribution by a quantity of 0.25 σ and by a quantity of 0.75 σ for a large effect size. 
Table 2 lists the definitions of effect size for the three parameters. Hence, for a Weibull 
distribution with parameters γ = 2.0 and β = 80, the standard deviation is 37 ms and the 
small effect size is a shift by 9.3 ms (α ± 9.3 ms). 
 
Table 2. Definition of large, medium and small effect size for the three parameters of the 

Weibull distribution 

  Definition 
 Large Medium Small
α 0.75 σ 0.5 σ 0.25 σ
β 0.75 σ 0.5 σ 0.25 σ
γ ± 0.75 ± 0.50 ± 0.25
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Regarding the scale parameter, there is no convention as to what constitutes a small, 
medium or large effect size. Hence, we adopted the same effect sizes for changes in scale as 
for changes in shift. Finally, for the changes in symmetry, a large effect size was defined as a 
change in the symmetry that would be clearly visible on a plot of the two distributions and a 
small effect as a change in the symmetry that would be difficult to see. As we saw in the first 
simulations, power is not symmetrical when the parameter γ is near 2.0. We chose to 
compare distributions with symmetry parameters of 1.25 and 2.75 (γ ± 0.75) for a large 
difference, 1.50 and 2.50 (γ ± 0.5) for a medium difference and finally 1.75 and 2.25 (γ ± 
0.25) for a small difference. Figure 6 shows the resulting distributions for the two extreme 
conditions. 

 

 
Figure 6. The two distributions compared when the effect size of change in symmetry is 

large (left) and small (right) 
 
Method 

Simulations were run in a fashion similar to the previous ones. We varied the sample 
size until a power of 80% was reached for each of the two tests, the AD test and the KS test. 
For most cases, the results are based on 10,000 simulations except when sample size is 
larger than 100, where the results are based on 25000 simulations so that the results are 
accurate to the third digit. 
 
Results 

The results are presented in Table 3. When the change is in the shift parameter, the 
net effect is to change the mean of the distribution. Hence, a powerful test should have 
about the same power as a standard test of means on two groups (e.g. a two-sample t-test). 
As seen, the number of data needed when the AD test is used (29, 61 and 233 for large, 
medium and small effect sizes respectively) is the same or slightly smaller than the number 
of data required by a t-test (29, 64 and 252 for large, medium and small differences in 
means; Cohen, 1992, Cousineau, 2007). The AD test is more powerful than a t-test when 
comparing two Weibull distributions; this can be explained by the fact that the left tail of a 
Weibull distribution is characterized by an abrupt onset. For a small effect size, there is an 
area of 9.3 ms where there are data in the first sample but none in the second sample. Since 
the AD test is sensible to differences in tails, it detects this difference in the left tail efficiently. 
When the two populations are normal, there is no advantage of the AD test over the t-test. 
The number of required data is 31, 69 and 272 for large, medium and small effect sizes 
respectively (based on Monte Carlo simulations with normal distributions). 
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Table 3 also shows the required number of data when the scale parameter and the 
symmetry parameter are varied. For changes in shift and scale, the required sample size by a 
KS test to obtain a statistical power of 80% is close to 50% larger than the sample size when 
using an AD test. Worst, the KS test is poorest at detecting changes in asymmetry, requiring 
almost twice as many data than the AD test. 

 
Table 3. Number of data required to reach a power of 80% as a function of the effect size 

and the test used 
 The Anderson-Darling test The Kolmogorov-Smirnoff test 

 Large Medium Small Large Medium Small 

α 29 61 233 42 92 360 

β 58 116 412 81 161 564 

γ 48 100 377 83 190 768 

 
In a regular psychology experiment, it is not known whether two groups differ with 

respect to their shape, scale, or symmetry, or a combination of the above. Hence, the 
following could be a reasonable rule of thumb for deciding the sample size to ensure 
sufficient statistical power: For a given expected effect size, choose the sample size 
associated with the parameter that requires the largest number of data. For example, if a 
medium difference is expected between two conditions, not knowing which parameter(s) will 
reflect the change, a safe approach would be to have 116 data per condition (a change in 
the scale parameter requires the highest number of data to ensure sufficient power). 
However, this ideal rule of thumb is limited by practical considerations: Considering that an 
experimental session generally has no more than 600 trials, that there may be a few 
erroneous responses that must be removed from the samples, and that there usually are 
more than two or three different conditions in an experiment, a sample size of 116 per 
condition might not be practical. If a KS test is used, this number reaches 190, a figure 
nearly impossible to obtain in any practical experimental design. Note that pooling data 
between sessions to increase sample size per condition is not recommended unless there are 
no significant practice effects.  

 

Discussion 
In conclusion, we have shown that the AD test is more powerful than the KS test in 

detecting any kind of difference between samples from two different distributions, all the 
while maintaining an exact type I error rate of .05. The KS test is overly conservative in 
comparison. This paper provides three different types of evidence that the performance of 
the AD test is superior. First, the AD test detects small variations of any one parameter 
between two distributions more reliably than the KS test. This holds for shift, scale and 
symmetry parameters, and for all sample sizes. Second, the AD test detects differences at the 
extreme ends of distributions more reliably than the KS test. Again, this holds even for small 
sample sizes and when the two distributions largely overlap. Finally, the AD test requires 
much less data per condition than the KS test in order to obtain sufficient statistical power. 
Since the AD test further possesses the same advantages as the KS test, and can be applied 
in the same experimental context, the evidence of its superior performance presented here 
shows that it should be preferred to the KS test as a tool for comparing distributions. 
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The AD test is recommended in any experimental context which requires a 
comparison of samples of continuous distributions, such as response time data, which 
requires more than a comparison of sample means.  

The MatLab (MathWorks, Inc., Natick, MA) version of the two-sample Anderson-
Darling test, “adtest2.m” for sample sizes larger than eight for both samples is provided in 
the Appendix. It requires as input two separate arrays of data, which do not need to be the 
same length. Samples are not required to be ordered before serving as input. Optionally, the 
type I error rate (α) can also be given as the third input. If omitted, the default value is α = 
.05. The output of “adtest2.m” confirms or rejects the null hypothesis that both samples 
come from the same underlying distribution, supplying the value of the AD statistic and the 
critical value for the specified α. Please note that the AD test is non-directional, that is it will 
only give evidence of a significant difference between samples, but not which one of the two 
is greater or smaller. For details on how to use the one-sample AD test, please refer to 
Stephens (1974).  
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Appendix 

 
Implementation of the two-sample Anderson-Darling test in MatLab (MathWorks, Inc., 

Natick, MA). This implementation assumes sample sizes to be larger than eight. Please refer to 
D'Agostino and Stephens (1986) for an approximate adjustment of the calculation of the AD 
statistic for smaller sample sizes, or to Pettitt (1976) for a table of critical values of the AD 
statistic for smaller sample sizes. 

 
function [H, adstat, critvalue] = adtest2(sample1, sample2, alpha) 
% ADTEST2: Two-sample Anderson-Darling test of significant difference.  
% This test is implemented for sample sizes larger than 8. For smaller   
% sample sizes please refer to A.N.Pettitt, 1976 (A two-sample  
% Anderson-Darling rank statistic) for the critical values. 
% 
% CALL:                        adtest2 (sample1, sample2); 
%       [H,adstat,critvalue] = adtest2 (sample1, sample2, alpha);  
%       Sample1 and sample2 are the samples to be compared. They must  
%       be vectors of a size greater than 8. Alpha specifies the   
%       allowed error. If alpha is not specified, a default value of   
%       0.05 for alpha is used. Alpha must be either 0.01, 0.05 or 0.1. 
% 
% RETURN: H gives the statistical decision. H = 0: samples are not 
%           significantly different. H = 1: sample1 and sample2 are 
%           significantly different (i.e. do not arise from the same 
%           underlying distribution). 
%         adstat returns the ADstatistic of the comparison of the two 
%           samples. If adstat is greater than the critical value, 
%           the two samples are significantly different. 
%         critvalue returns the critical value for the alpha used 
% 
% (c) Sonja Engmann 2007 
  
if nargin < 2, error('Call adtest2 with at least two input arguments'); end 
if nargin < 3, alpha = 0.05; end 
  
% Assignment of critical value depending on alpha 
if alpha == 0.01, critvalue = 3.857; 
elseif alpha == 0.05, critvalue = 2.492; 
elseif alpha == 0.1, critvalue = 1.933; 
else error('Alpha must be either 0.01, 0.05 or 0.1.'); 
end 

 
samplecomb = sort([sample1 sample2]); 
ad = 0; 
for i = 1:length(samplecomb)-1 
    m = length(find(sample1(:)<=samplecomb(i))); 
    ad = ad + (((m*length(samplecomb) - length(sample1)*i)^2)/(i*(length(samplecomb)-i))); 
end 
adstat = ad/(length(sample1)*length(sample2)); 
if adstat > critvalue, H = 1; else H = 0; end 
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