

583

TESTING AND SECURITY IN DISTRIBUTED ECONOMETRIC
APPLICATIONS REENGINEERING VIA SOFTWARE

EVOLUTION

Cosmin TOMOZEI1
Assistant-Lecturer, PhD – C.
“Vasile Alecsandri” University of Bacău, Romania
Department of Mathematics and Computer Science

E-mail: cosmin.tomozei@ub.ro

Bogdan PATRUT2
Associate Professor, PhD
“Vasile Alecsandri” University of Bacău, Romania
Department of Mathematics and Computer Science

E-mail: bogdan@edusoft.ro

Abstract: The objective of this paper is to present the results gathered in research, regarding
the testing and the security assurance as key components of distributed econometric
applications reengineering. Consequently, the testing and security procedures will be formally
shown in order to bring into light the robustness and stability of econometric applications
reengineering. The W model for software testing in reengineering will be as well exposed as
one of the contributions. Agility and iterative features of software reengineering are to be
mentioned, with the intention of revealing their use during the lifecycle.
Keywords: security reengineering; W testing model for reengineering; distributed
applications.

1. Distributed Applications Requirements and Dynamics through
Reengineering

Dynamics, as an important characteristic of distributed applications is brought into

light by the software evolution. Distributed applications are constantly being subjected to
several types of transformations. They consist of the updates of their structures, such as the
addition of new modules or modifications in other modules, so as the software applications
does conform to the new objectives they have to achieve. The evolution in objectives has a
perpetual correspondent in the evolution of requirements.

Evolution of software is viewed in literature as the other the types of evolution, such
as human evolution, social evolution or economic development. The desiderata of stability
and concordance have to exist between changes in business processes and changes in
software applications, done by means of software maintenance or by reengineering.

The concept of evolution is defined in Encyclopaedia Britannica, from a biological
perspective. Then customizations are made to present this concept in other ways and for
other sciences. In our point of view, software evolution is considered to be the starting point

584

in the analysis of reengineering, particularly when talking about distributed software or
about econometric applications.

Definition 1[1]: Evolution is the biological theory that plants and animals have their
origins in pre-existing species and the differences that distinguish between them are due to
changes that took place in successive generations.

In [3] evolution is defined as a creative concept, an alternative to Charles Darwin’s,
by Henri Bergson in the work, Creative Evolution, published in 1907. According to this
theory, the evolution is achieved due to the natural creative impulse and human motivation.

Definition 2 [2]: Software evolution is the sub domain of the software engineering
discipline that investigates ways to adapt software to the ever-changing user requirements and
operating environment.

The spiral software development model with agile elements that we used in our
reengineering projects is observed and it extracts the trends of future iterations. In this way,
reengineering and maintenance become predictive processes, more easily to be understood
and continued by development teams.

Thus, certain aspects are provided in advance. Therefore, the activity of creating
new software becomes an evolutionary process through successive stages of the projects
evolution. It becomes straightforward then, to determine correlations between the social
and economic developments and their coverage in distributed software applications.

Definition 3: The evolution of software development is a scientific and technical set
of creative phenomena. Creativity and willingness to develop new applications give impulses to
specialists to create significant and valuable contributions in the development of new software
systems, corresponding to the rapid and continuous changes in the real world.

Regarding the dynamics of distributed systems and consequently of distributed
applications, their evolutionary trend should be noted, while systems configuration changes
over time. The successive stages of maintenance and reengineering transform the software
entity, in such way that after a certain number of iterations, software applications are
becoming very different in comparison to their initial configurations.

The spiral development model with agile elements shows that the integration
elements of agility in application development cycle, software configurations are becoming
more dynamic, so that the updates in real-world business processes are to be reflected in the
structure and objectives of distributed applications in a shorter period of time.

We believe that the software development cycle should be defined correspondingly
to the reengineering cycle, so that each stage of the development cycle should have a
counterpart in the implementation of the reengineering process. This will offer to software
applications higher levels of maintainability and adaptability in the future.

Distributed applications reengineering is an evolutionary and adaptive approach,
which incorporates elements from existing IT systems and applications that proved to be
valuable for the organization over time. These elements will then be integrated and
exploited in the new stage of the system or distributed application, by transformation.

In [4] the text entities reengineering is taken into discussion. By analogy, we
present the concept distributed applications reengineering with the involvement of the
following aspects:

 the definition of a new objective that has to be achieved, which does not diverge
significantly from the initial aim of the distributed application, but reflects a qualitative leap
in the level of the outputs;

585

 the existence of a distributed applications that is to be subject to the
transformation process; consequently, the components which remain in the structure and the
new modules that should be introduced in the structure should be determined, so that the
results should identify themselves within a well-coagulated software; some classes and
objects remain in the structure, others being eliminated and others being modified in order
to achieve new goals; furthermore, we formalize this by the reengineering function [5] which
is defined on the basis of the development function relationship (4) by updating the modular
structure of applications which is subjected to reengineering;

 the choice of appropriate technologies so as to reengineer the entire software
system; it consists of the architecture, diagrams, classes of objects, databases, relational
tables, all included in the new structure of software;

 the establishing of practical quantitative methods and indicators for a precise
measuring the quality of each iteration of the process such as engineering, reverse
engineering and reengineering; afterwards the software system reaches its final form by
being iteratively transformed;

 the accurate description of the evaluation stages of the reengineering life cycle
for the efficient management of the budget, people involved in the project and time
resources;

 the management of risks related to software reengineering process; this stage is
important for the security and integrity of the reengineering projects and contributes to the
quality assessment of the reengineering process;

 the team composition, each team member will have specific tasks to be
completed within the project; each member of the reengineering team becomes familiar
with the applications state-of-art and current technologies.

Distributed applications reengineering is a complex process that presumes
transformations and updates to all the levels of software such as client, business logic and
database tier. The projects of reengineering assume higher costs and long development
durations. Still, reengineering saves many financial resources and besides that, it reduces
development costs and keeps the valuable modules of software for a longer period of time.

In distributed applications reengineering, the most common cases are made of
migrations to new versions. The needs of such kind of projects are due to the following
premises:

 the emergence of new fields of activity, which are to be reflected in the software
application, such as economic growth, legislative or tax changes or structural changes;

 the appearance of new categories of goods and services, that are needed to be
offered to the customers; depending on the operating activities of the company, it will
comply with consumer demands by offering new products involving a high degree of
innovation and quality;

 the materialization of new ways to deduct business expenses, due to legal
developments and changes in financial accounting;

 new regulations relating to fixed capital depreciation, which update the
categories of goods that are repaid, duration and the methods of calculation;

 the need to meet customers’ demand in a shorter time and with greater
suitability; increasing speed of response to the demand appeared on the market is essential
to ensure competitiveness;

586

 organizational and structural changes are compulsory to be reflected in the
computer system of the company;

The key element in software reengineering takes for granted the existence of the
original software, which has proved its value in use over time. Due to numerous updates and
phases of maintenance, there is a sufficient likelihood that soon the software will no longer
achieve the necessary tasks, or his errors will exceed the established level of significance.

Unlike software development process that starts at the green field, with the original
vision of the development team, interviewing beneficiaries, determining objectives,
determining the preliminary architecture of the system by the time he entered into service,
the reengineering project assumes as a starting point the analysis of the existing system in
the organization and detection of the problems it faces.

As a result, the reengineering team will decide which of the parts of the initial
structure are going to be kept in the new application and which of them are going to be
updated or deleted. The key point of reengineering is to reuse the valuable components or
modules of the application.

Another key issue in the process of software reengineering consists of identifying
the optimal timing of application, based on formula (1). For each of the iterations in the
development cycle a time resource Ti and a level of total cost CTi are allotted. The
inequalities given in the relations (1) and (2) present these desiderata. But for the
maintenance process to be efficient, the cost and duration for the following iterations of
adaptive maintenance have to be less or equal to the time and cost of the previous
iterations.

T1>=T2>=...Ti...>=Tn-1>=Tn (1)
CT1>=CT2>=...CTi...>=CTn-1>=CT n (2)

Each one of the iterations within the spiral reengineering model with agile

elements reflects on the achievement of a new objective. The new objective is reflected in the
requirements identified by the software development process management, due to the
interactions with the target group of the IT application. This is shown also in the algorithm in
Figure 1.

587

Figure 1. The choice between adaptive maintenance and software reengineering

In figure 1 it is presented how the management of the IT project decides between

the continuation of the process of adaptive maintenance for the distributed application and
the starting of a new project, which consists of software reengineering.

The idea of reengineering is brought into light because of the growing durations
and costs of each adaptive maintenance process, correspondingly to the new objectives
appeared in user requirements. Therefore, after several stages of adaptive maintenance,
the complexity of the software application [13] is significantly growing and each of the new
users’ requirements engages additional costs and more and more time resources.

2. Software components reuse in the process of reengineering

The reuse of components constitutes the core element of the reengineering

process. The components already existing in the system have to coexist with new elements
added to the structure of the software entity.

The reuse of components in reengineering is carried out mostly by the upgrade of
their existing structure and behaviour. It is a lot more productive to update the components
through the process of software refactoring [10], in comparison to completely abandoning
them and then to start the development process from the green field.

In software developers’ communities, it is often understood by reuse of components
the meaning of source code reuse. This point of view is partially correct, but in a simplistic
manner, because distributed applications presume the existence of many other components,
with the same importance and need for reuse in reengineering. The reuse of components
consequently implies transformations and updates to the level of requirements, to the

-> CTi ,Ti,

Ti+1 <= T1

and CTi+1 <=

CT

Adaptive
maintenance

Reengineering

 STOP

YES

NO

588

architectural level, to the level of detailed design, to the level of unit testing and the
database tier, as well as in the source code.

The refactoring process takes into account the existing methods in the classes of
objects to give them a high level of quality, by identifying and removing duplicate sequences
of code, so - called software clones. Refactoring has the role to provide a higher degree
modularity and reusability in the following iterations of software reengineering.

When talking about the life cycle distributed applications reengineering, it is
necessary to detect code duplication and subject the software entity to refactoring, because
even from earlier stages of the adaptive or corrective maintenance, redundant elements of
various types, such as classes of objects, methods, tables, or attributes, were added by
method of copy / paste in order to meet the new requirements in a relatively short period of
time. That aspect does greatly increase the complexity and the redundancy of software.

The reuse of components is based on the study and preliminary understanding of
the basic elements existing in the application being reengineered. Each one of the data
structures has to be identified and it should be determined how each data structure
contributes to the objectives of the application. Just after that, decisions about the update or
elimination of data structures are to be made. However, these decisions also take into
account that all the work done by specialists is based on accurate requirements.

The duplication of code and of the databases structures in distributed applications
condition the growing of redundancy. This phenomenon is identified and minimized through
reengineering. Most of the reengineering process analysed in the community of specialists
[6] reported that duplication of code has been detected from 7% to 23%, which in extreme
cases went up to 59%. This is the reason why significant efforts have to be made for the
detection and the minimization of the level of code duplication in distributed applications
reengineering projects.

The process of code compaction is ensured by source code refactoring. Having a
compact and stable code is important because this is minimizing the volume of operations
performed and reduces the number of calls of the default method as well. This process has
great importance in simplifying the class graph of the distributed application. Hence a much
clearer picture of the class type entities and interactions between them is developed.

Because changes made in the code by refactoring process are reflected in the
architecture and system design, and vice versa, it is desirable to always maintain the link
between architecture and actual implementation.

The indicator of code duplication reflects the number of duplicated source code
entities divided by the total number of entities from the source code and it is defined as:

k

i

p

j

k

i

p

j
ijij

n

i

m

j

n

i

m

j
ijij

k

i
i

n

i
i

AttrMet

AttrDupMetDup

Class

ClassDup
Idc

1 1 1 1

1 1 1 1

1

1 (3)

where:
 Idc is the indicator of code duplication

 iClassDup represents classes are duplicated in the distributed computing

application;

 iClass represent classes of objects within the distributed computing application

589

 ijMetDup is the duplicated method j from the class i;

 ijAttrDup is the duplicated attribute j from the class i;

 n is the number of duplicated classes of objects in distributed application;
 m is the number of class methods and attributes of objects duplicated;
 k represents the total number of classes in the distributed application;
 t is the number of duplicate methods within the classes.
This indicator has been taken into account in the process of reengineering the two-

stage least squares distributed econometric application for regression analysis. In
consequence, the number of code lines has been reduced and several methods were
correctly parameterized by refactoring. However, in econometric applications development
the correctness of econometric algorithms comes on the first place, and just after the
obtaining of correct coefficients of linear models developers have to pass through the source
code optimization by refactoring.

The transition of the econometric application from the initial phase to a distributed
environment is described in (4), concerned being on the evolution in objectives and modules.

 mn

i

i
n

i

m

i
ii

gengineerin
n

i

i
n

i
i ObjObjMoMoDevObjObjMoDev

1

2
2

1 1
21

Re1

1
1

1
1 (4)

where:

 1iMo are the distributed application modules after the first iteration of process

reengineering
 Dev is the development function of the spiral model with agile elements;
 n is the number of modules of the application after the first iteration of

reengineering;
 m is the number of application modules, introduced during the second iteration

of the reengineering process;

2iMo application modules are distributed result after the second iteration of the

reengineering process;
 2

iObj targets are operational, distributed as a result of the application process

reengineering software that are integrated into the ultimate objective of the application;
 2Obj is the ultimate aim of application in stage 2 as an arithmetic sum of other

objectives.
Quality assurance strategies of distributed applications are very important

reengineering. Each one of the updates are being inspected and certified through testing. In
the next section, accordingly, the W testing model for reengineering will be defined and
described.

3. The W Testing Model for Reengineering

If the process of reengineering starts in a mostly theoretical way, by the

determination of requirements and demands, suddenly aspects regarding the study and
testing of the existing software application are brought into the play. Initial predictive test are
made, for the team to efficiently understand the behaviour and the structure of the

590

application. In addition to this, behavioural and structural tests are also being defined by the
reengineering team.

The initial tests are carried out by the team of specialists, while analyzing the
existing information system or software application for the determination of the systems
behaviour based on the established factors from requirements.

It is also necessary that in the steps of reengineering discussions and interviews
take place between the reengineering team and the target group of users. The ideas and
objectives determined through the interviews and the preliminary discussions are the basis of
the black box testing phase.

Black-box testing consists of a collection of predictive methods, techniques and
procedures used in the analysis of existing software, which is to be subjected to the
reengineering process in order to determine the behaviour and utilization patterns. These
tests provide an objective view on the IT application.

In [7] there is mentioned that black-box tests identify the applications behaviour,
and black – box tests are used in order to determine bugs in the high-level operations as
well as the overall functionality of the tested software.

Testing the behaviour of the software application requires an understanding of the
domain, and how software contributes and models the activities within the organization. The
higher level of design is understood by the team of IT project and black-box test cases are
identified. Every test case is placed in correspondence with the activities of the target group
of users.

In the case of distributed econometric applications for two-stage least squares
regression analysis, it is shown that the development team as well as the teams of
maintenance and reengineering must have solid knowledge of statistics and econometric
methods and the way to implement them in programming languages. Later in the project,
aspects about how to integrate the modules in distributed applications are to be carried out,
by means of reengineering.

For distributed econometric applications discussions and interviews are carried out
as in the general case of software reengineering. There are group discussions and interviews
with the users in order to determine the essential elements of their interaction with the
software. These include the following tasks to be achieved by the reengineering team:

 the interviewing of users about the types of problems they solve with the help of
the existing econometric application; they describe the elements of statistics and
econometrics consisting of the defining of problems which have to be solved and the way in
which the econometric problems are integrated into the existing application;

 to get the users description of the types of data sets, here the test team checks
the general types of data sets, the maximum number of data series, the maximum number
of exogenous variables included in the regression model, the validation of the data sets;

 the way in which the target group of user are dealing with the functionalities of
the existing application; the reengineering team follows the human – application
interactions, and the way in which each member of the target group reaches his econometric
or statistical objectives;

 what the users opinions about the application which is subjected to the analysis
are ; if they are pleased regarding the duration of the operations, and how the users
perceive the ways of improving of the existing application;

591

 the unusual aspects determined in the applications history; the target group of
users tell to the reengineering team about the problems had in the past, in the use of the
software application, and also about the ways and durations of solving of the identified
problems;

 get the users opinions about the quality of the application; the target group is
formed of specialists in statistics and econometrics, and they have the knowledge to share
with the development team, regarding which other statistical or econometric algorithms are
needed to be implemented in the application;

In figure 2 there are presented the stages of the distributed econometric
application testing during the process of reengineering, integrated in the W testing model
based on the V model presented in [7].

Figure 2. W testing model for software reengineering

In the distributed econometric application for two-stage least squares regression

analysis, there are some important aspects, both for black-box, beravior, testing and for the
white-box, structural testing.

First of all, the testers have to define the econometric problem, that has to be
solved through the software. The defining of the problem presumes the description of the
data entered in the regression model, the number of exogenous variables, the number of
data series. They have the possibility to enter the data by hand, by completing the tables
appeared on the web page or by reading it from binary or XML files. Sometimes, generators
linear models can also be used for defining the series of data more rapidly.

592

Secondly, the testing of correctness of the coefficients determined from the model is
prepared, by using the two-stage least squares method, and consequently the two-stage
least squares algorithm. The testers are to determine whether the entered data is correctly
instantiated in large scale matrices and if the calculations are made correctly. If there are
any errors of reading the data from the files, they are recognized and exemplified by the
testers.

Another important aspect is the determination of the exact code sequences that
generated the results of the calculation of coefficients. The testers introduce several series of
data repetitively in order to see whether the application is stable and whether it reflects the
modifications made in the series of data entered again.

The computation of the error [11], [12] from the regression model and the analysis
of the error are tested, in order to determine whether the error is set between the acceptable
limits. In (5) and (6) the formulae for the computing of the error and its limits are presented.

iii yyErr ˆ (5)

where:

 iErr represents the error term from the series i of data from the regression

model;
 yi represents the endogenous, dependent variable of the series i of data from

the regression model;

 iŷ represents the estimated endogenous variable;

LimSupErrLimInf i (6)

where:

 LimInf represents the lower limit of the error;

 LimSup the upper limit of the error;

The testing procedure continues with the computing of the residual sum of squares

[11], from (7) which represents the unexplained variance of the model;

n

i
ii yySSR

1

2)ˆ((7)

where:
 SSR represents the residual sum of squares;

 iŷ represents the fitted value for each observation;

 n represents the number of data series from the model;
After the computation of the residual sum of squares, the testing procedure goes

on to the computing of the total sum of squares, as total variance of the dependent variable,
presented in (8), [11] and (9).

n

i
iyny

1

1 (8)

n

i
i yySST

1

2
 (9)

where:

593

‐ SST is the total sum of squares;

‐ y is the average of the dependent variable;

The explained sum of squares is defined as the explained variance of the model

and reflects the sum of the differences between the fitted values iŷ and the average of the

dependent variable and is presented in (10)

2

1

ˆ

n

i
i yySSE (10)

The test case will continue by checking whether the total sum of squares is equal to
the sum of the explained sum of squares and the residual sum of squares, shown in the
relation (11);

SST = SSE + SSR; (11)

The next step consists of the computing of the coefficient of determination R2

presented in (12) and whether it belongs to the interval [0,1].

SSTSSRSSTSSER /1/2 (12)

Additional aspects related to how the results are saved in binary files, XML files or

in databases are also tested, in order that the data should be used again in the future. The
testing team checks if the data is correctly saved and whether there are any conversion
errors generated by the software during the serialization and deserialization procedures.

All of the relevant aspects determined in the testing stage are taken into account
for the transformation process. The recognition and solving of computing issues ensures that
the process of reengineering will gain in efficiency and will offer a higher level of quality to
the software application.

The test cases are also reflecting upon the security aspects of the application.
However, in the following section, several security issues in distributed applications
development will be described.

4. Security assurance in distributed econometric applications
development

In distributed applications reengineering the security assurance is a very important

element, which has always been seriously considered. The work in distributed environments
such as computer networks and the sharing of information through the Internet has to notify
the presence of threats and dangers.

In our case, due to the technology implemented in the two-stage least squares
distributed application for econometrics, it is compulsory to assure that the data and the
software are protected in an appropriate manner.

When users want to access the websites of the distributed econometric application
they have to pass through the authentication procedure. They have the possibility to create a
user account, and after that to login for being redirected the main page.

Asp.NET forms authentication is used for reaching the authentication process, with
all the elements provided by .NET Framework [9] and Windows Server 2008. Before the

594

reengineering process, the application did not have any authentication procedures defined,
since it hadn’t been projected for the distributed environment. The process of reengineering
transformed it radically into a distributed application with special needs, such as concurrent
access, authentication, authorization and cryptography. Consequently, custom methods for
defining the process of forms authentication have been initialized, due to the target groups’
requirements.

The encryption of configuration files has also been achieved for the distributed
econometric application, and it was straightforwardly done by means of the .NET
Framework, just through the addition of special directives for security.

Before the encryption, the connection strings section from the configuration files
looked like in figure 3. The evolution of requirements brought an evolution in the
applications configuration security, so as the configuration files and the password table to
become encrypted.

<connectionStrings>
 <add name="conectionutiliz" connectionString="Data Source=.\SQLEXPRESS;Initial
Catalog=phdresearch2;Integrated Security=True;Pooling=False" />
 <add name="phdresearch2ConnectionString" connectionString="Data
Source=PROGRAMARE03-PC\SQLEXPRESS;Initial Catalog=phdresearch3;Integrated
Security=True"
 providerName="System.Data.SqlClient" />
 </connectionStrings>

Figure 3. Web.config connection strings section

After the writing of the encryption method presented in figure 4 and [8],

transformations are suddenly made for obtaining the results shown in figure 5. The
connection strings section from the web configuration file specifies that there are two
databases integrated in the application. The reasons for the integration of two databases are
the fact that the econometric application uses a database distributed by replication.

595

 private void EncryptConnectionString()
 {
 System.Configuration.Configuration config =
WebConfigurationManager.OpenWebConfiguration("~");
 ConfigurationSection ConnectConfigSection = config.GetSection("connectionStrings");

 if (ConnectConfigSection != null
 && !ConnectConfigSection.IsReadOnly()
 && !ConnectConfigSection.SectionInformation.IsProtected
 && !ConnectConfigSection.SectionInformation.IsLocked
)
 {
ConnectConfigSection.SectionInformation.ProtectSection("DataProtectionConfigurationProvid
er");
 ConnectConfigSection.SectionInformation.ForceSave = true;
 config.Save(ConfigurationSaveMode.Full);
 }
 else
 {
 ConnectConfigSection.SectionInformation.UnprotectSection();
 ConnectConfigSection.SectionInformation.ForceSave = true;
 config.Save(ConfigurationSaveMode.Full);
 }
 }

Figure 4. Asp.Net C# encryption method

The method form figure 4 uses a configuration object defined in the

System.Configuration namespace and in the System.Configuration.Configuration class.
In the method, there is also specified that the section from the web configuration file which
will be encrypted is the connection strings section. The security provider for doing the
encryption is DataProtectionConfigurationProvider and it implements Windows Data
Protection Api. The key idea is that [8] the Windows Data Protection Api does not allow the
exporting of encryption keys, and consequently the application has to run on just a single
server, which is good for our case.

If it is necessary to work on multiple application servers the
DataProtectionConfigurationProvider has to be replaced by
RSAProtectedConfigurationProvider which use a RSA publik key cryptography algorithm.

596

<connectionStrings configProtectionProvider="DataProtectionConfigurationProvider">
 <EncryptedData>
 <CipherData>
<CipherValue>AQAAANCMnd8BFdERjHoAwE/Cl+sBAAAAWqz2nwxtwUucSibHUAfMTwQA
AAACAAAAAAAQZgAAAAEAACAAAACU+WAl43JVod9aEOcmhjHJ6DOKgX6vlsQTzj1dF+Vr
nwAAAAAOgAAAAAIAACAAAABInEtiJ4PXYzffxzzi4FzJoRIJnJhsoe5XvOgEmM57QiAFAACygLU
+4nki+6k7WjtQe7Q2FzEXon5Or8A0s7LMQpHxQg1Nh/r0EVDHu4etudMBkGNgrwbC7nkLu
rkFr7kst3AFoZO85Bb3xDc0fkMdLTVD995MgaUIWkVh4f4KDgtikqU4U/OKpBmGciRKhD6uV
mfi30jCiNVtITepmqWDM1RC7ZIOTjgT0J5Asx+Da8Tc0OjkVSGpHS8rYrG+NnAnUyUn7EJj3b
MPTxNCHZGFx/vgG/qcsfXvRThsdzGRkDL8VRFJF+v0hIdqIGrg2g+VFQkbIQ7aHD/Kwk21xEpv
Lv7ZComc+FZuF58c4fB6ZJEAg9VI5/ybBjClis7aOsIHBX2+EYMUiDuZ1qlRh0bStwjWInbGG7G
FrzWRHnUAMx/Xj3YpK3bRIqmuw8+6/ixXvxngNgNeTQVdiusUj6PksHqbFv4hdcPSdFPuCG6li
Fq9+IkkmCkYMvZ+ODg3GtcEtbr4W4EHz2kHRP2CDmqoNChntYq5FnrxlgXfXuB44X4+6PBes
wsgwrN0dl9wFAFrrnNbnBzqRUcweZqE/MUfvX4x5JOiqJ6dQrAvVSBBAcCFyjBhvKYi0qp0MTE7
DiaQtWFKaIjqiT3H45I56t58NNLC2HDSR9QcZYxLncOyBR/MOAmQQqQPIGkvGkM2nsnFeY
32+5s4WlJrGimw8e/dB+fBGw6R0rcBBw9vNNmyYJJFoUMXh+QLOei6U4ZlWvWml8h02RlQ
1ofpxpkcF+Y/DZ2ZnYXYeViaUYwxupjCrKdIf99vDGqTixv6CP4N7W0nAX1UAqnes4es/TSOSl
DZA5HAHcDKrDcD2LTU/XEOGjtHgiYgcGkUMLdrC5dn7DxE/a2bjcIVY9shyjd8I+4Dm4raiPQ
CtjCb5IdLml3fxEjGnnQBJRYEi7l2EN+Zz3mVTFEGBVbDeHjgSSAtfSg+JMzxj6A5UbUWmqXy7
K5UV1TeQThQu+McpwElJrKafkP41LQtkOeqXzpQBjqehgZByf1lkpqkS5BGi1eYqzH1K/urfB0G
KQE7iY4jraakBMNpJKOrLTnLjnNNEaLeu9GbVmZBhUHLboUVZvGJhWX7OievT3oQD+cDsl5
uMxW+uQvTc+rs5lLlzadHtmhVuEopa12CoygedvsKc2OQB6HKeXPjX0sxwXr2YbuGnmoBI6jJ
6lgZBzhKObCBtW9ypBwOBovVIpLZ8WZjGiWuXHxIqPW4IlTP2QWT1iBxJxn9x0SUvN/zsr6ejWf
0Ow1ZlMvP+9xTHVmQSBfwDOjSLjrAmypx9ajMhR60VcvgDhTWbwHoHgWwq4QNx2eB+Bw
+U3n31asYnQxFGi8l9L+uoinNc46OZpn5ASUHFgli1fL+kvCGdgIhwUdj8eRX/D2qGljLYAEE5
wXlIQ2uEXwaN56IcT+ycWicXAxSx1S4II1VlVSWniboe+cY0Z/abfs/UXwuM4B8uBy4FzrrAsVxyij
jO/TUAcVi58ecTLq+VowYOTEY/mwT+bYg/a34DuqJX8cilHnSYjm+UCNYaYXAIR5bHvaoIecL
66HtSqENLiTXjD3eWQuDHbUFErgCYwg0fiIs93OtzPtA2MLS4yzR8l8jaBJhdCuhgf8gdsDvLdYZ
VfbEJKhP6VRZel0g4IF5rkwsq/SelQ+AaEzoJhWVCB/t/FHLoCzIGamI7cZxB7VY+yXmBXgMKU
ZdnP8e5fCAFDdotVPhgacJOP91Q3iWiuyJ5ihMz8EIJYNz22pK6q9hSoQgMhqSQAAAAP4FsZ
NdxtrdnAZUjvCX5ve49csGV1XuYHBLOO+MJKE/3J9aGVQnqkhYhT/SQtQLS6qECtD69BUjaJr
Z44LGSes=</CipherValue>
 </CipherData>
 </EncryptedData>
 </connectionStrings>

Figure 5. Web.config with encrypted connection strings section

In figure 5 the encrypted section of connection strings from the configuration file is

presented. Potential hackers cannot connect to the databases and access the data, because
of the encryption of the connection strings. The only machine which can decrypt the above
code is the server on which the application runs on. Attackers may want to break in the
server, but it is very difficult, because Windows Server 2008 is one of the most secure servers
ever built.

Another very important thing in distributed applications development is the
implementing of parameterized SQL Commands and stored procedures. In distributed

597

econometric applications, the work with the SQL commands has to be done with maximum
of care, because hackers may want to forge identities and delete the data from tables.
Another important danger which has to be prevented is the SQL Injection Attack. Both of the
dangers are prevented by solid authentication and authorization procedures and using
correct parameters in SQL commands.

The next iteration of reengineering supposes moving to Windows Communication
Foundation and to integrate the existing modules of the application in WCF Services. When
talking about Windows Communication Foundation security aspects we have to take into
account the transport level security and message level security.

Each one of the above mentioned security directions are important for the
development of reliable econometric software as distributed applications. In this case data
sent by messages between services in distributed environments is as well encrypted.

To conclude, we may say that security reengineering integrates itself in the IT
reengineering project and offers a higher level of confidence in the use and administration
of the distributed econometric application.

5. Conclusions

To sum up, this paper has described the objectives achieved by the authors in the

field of distributed applications development for econometrics. This desideratum of the
reengineering presumed the defining of new strategies of testing, which are different from
the ones mentioned in the usual testing model, due to the starting point of the project, which
consists of the active application, being subjected to reengineering.

We defined our own indicators and metrics so as to determine the general image
of the existing software application, which has been subjected to reengineering.
Consequently, the quality assessment became more efficient and the reengineering team
had the opportunity to get a more accurate image about the work need to be done in the
following stages of the IT project.

Security reengineering implies the study and optimization of the entire software
entity at all levels. Furthermore, security reengineering does offer new security strategies
concerning the software product, such as architecture, design, source code and database
tier. Migrating to new technologies, such as WCF supposes that important changes are made
in the security policies, on the basis of the integration of human readable applications into
machine to machine communication over distributed systems.

6. References

[1] Encyclopaedia Britannica – online, 2010, www.britannica.com
[2] Mens T, Demeyer S. Software Evolution, Springer, 2008, ISBN 978-3-540-76439-

7.
[3] Bergsion, H. Creative Evolution, Henry Holt and Company, New York, 1911, ISBN

0-486-40036-0.
[4] Ivan, I., Popa, M., Tomozei, C. Reingineria entitaţilor text, Revista Romana de

Informatica şi Automatica, vol.15 nr.II, 2005 pp. 15 – 28, ISSN 1220-1758.

598

[5] Tomozei, C. Hypertext Entities Semantic Web-Oriented Reengineering,
Journal of Applied Quantitative Methods, vol .III nr. 1, 2008, pp. 9- 19,ISSN
1842-4562.

[6] Koschke, R. Identifying and Removing Software Clones, Software Evolution,
Springer, 2008, pp. 15 – 36, ISBN 978-3-540-76439-7.

[7] BLACK, R. Critical Testing Processes: Plan, Prepare, Perform, Perfect, Addison
Wesley, 2003, ISBN 0-201-74868-1.

[8] Wildermuth, S., Blomsa, M., Wightman, J. Microsoft.NET Framework 3.5 –
ADO.NET Application Development, Microsoft Press, 2009, ISBN 978-0-
7356-2563-1.

[9] Northrup, N. Microsoft.NET Framework 3.5 – Application Development
Foundation, Microsoft Press, 2009, ISBN 978-0-7356-2619-5.

[10] Fields, J., Harvie, S., Fowler, M., Black, K. Refactoring, Ruby Edition, Addison
Wesley, 2010, ISBN-13: 978-0-321-60350-0

[11] Wooldridge, J.M., Introductory Econometrics, A Modern Approach, South
Western Cengage Learning, 2009, pp. 506-546, ISBN-13: 9780324581621.

[12] Wooldridge, J.M Econometric Analysis of Cross Section and Panel Data, The
MIT Press, 2002, ISBN 0-262-23219-7.

[13] Patrut, B., Pandele, I. How to Compute the References Emergencies in a
Hyper-encyclopedya, Recent Advances in Systems Engineering and Applied
Mathematics. S WSEAS conferences in Istanbul, Istanbul, 2008 p.72-75, ISBN
978-960-6766-91-6, ISSN 1790-2769.

1 Cosmin TOMOZEI is University Assistant - Lecturer at the Mathematics and Computer Science Department from
Faculty of Sciences of the “Vasile Alecsandri” University of Bacau. He is a PhD candidate from October 2007 at
Economic Informatics Department from Academy of Economic Studies, Bucharest. He holds a Master in Science -
Databases - Business Support from the Academy of Economic Studies, Bucharest. He graduated in Economic
Informatics at Faculty of Economic Cybernetics, Statistics and Informatics in 2006. His main research areas are:
object oriented programming, functional programming in Lisp and F#, software reengineering and distributed
applications development. He is the author of 27 peer reviewed scientific papers.
2 Bogdan PATRUT (b. June 16, 1969) received his BSc in Informatics (1994), MSc in Distributed Programming
(1996), PhD in Accounting and Business Information Systems (2007) from “Al. I. Cuza” University of Iasi, Romania,
and PhD in Informatics (2008) from "Babes-Bolyai" University of Cluj-Napoca. Now he is associate professor of
informatics at Mathematics and Computer Science Department, Faculty of Sciences, "V. Alecsandri" University of
Bacau, Romania. His current research interests include different aspects of Artificial Intelligence. He has (co-
)authored 23 books and more than 20 papers, more than 10 conferences participation, member in International
Program Committee of 4 conferences and workshops.

