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Abstract: The periodic demands of a single product are forecasted and given by a distribution function 
for each period. The product can be manufactured in n plants with heterogeneous characters. Each plant 
has its specific stochastic production capability. The expected capability and the standard deviation of 
each plant can be increased by allocation of additional budgets. The problem is to determine the total 
budget needed and its distribution among the n plants in order to ensure a complete fulfillment of the 
demands according to the due dates and the pre-given confidence levels. 
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1. Introduction 
 

The planning process of global production for a new product with numerous 
quantities addressed to anonymous customers (e.g., semiconductors, pharmaceutics, etc.) 
forces the corporation management to take the following principal decisions: 1) how much 
to produce, 2) where to produce, and 3) how to divide the production among a number of 
optional producers.   

Mostly, actual demand fluctuates around the mean of demand distribution. 
Assuming that the mean of the underlying demand pattern is known, this fluctuation 
constitutes demand uncertainty. However, the expected demand can also vary through time, 
such as when seasonality is present. In such cases the true mean of the demand distribution 
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is not stationary through time. Demand variability over time includes both demand 
uncertainty and variation due to the shifting mean of the demand distribution (Enns, 2002). 

The presence of random yields can considerably complicate production planning 
and control. When the manufacturers control their inputs but the outputs exhibit random 
yields, coordination in such systems becomes quite complex. Two variants of demand have 
been addressed in the literature: 1) rigid demand - where an order must be satisfied in its 
entirety (possibly necessitating multiple manufacturing runs), and 2) non-rigid demand - 
where there is a penalty for a shortage (only one manufacturing run). The determination of 
monthly productions is particularly challenging when yields are random and demand needs 
to be satisfied in its entirety (i.e., rigid demand). The efficient planning of monthly 
productions often becomes a crucial economic factor. As a result the modeling of production 
with random yields has attracted the attention of many researchers (for a literature review 
see Yano and Lee 1995). 

Random yield disables satisfaction of demand in its entirety, but determining strict 
chance constraint enables us to attain close claim to rigid demand. Laslo (2003) clarified that 
when additional budget is invested in order to obtain a rigid performance, we should refer to 
the impact of this act on the performance fractile and not on its impact on the expected 
performance. Such an approach puts the delivery objectives before the objective of reducing 
superfluous production. 

Laslo and Gurevich (2007) have developed an iterative procedure for the 
minimization of budget that is required for executing the activities chain with chance 
constrained lead-time. The procedure assumes fixed coefficient variance while budget is 
added in order to increase the execution speed. This iterative procedure is applicable as well 
for the minimization of the total budget that should be allocated among heterogeneous 
plants (differing by initial investment, productivity and yield variance) which are supposed to 
supply together a rigid known demand under strict chance constraint. Laslo et al. (2009) 
have introduced another procedure that resolves problems where the optimization is carried 
out for several known rigid demands with a common due-date but under different chance 
constraints. They assumed for each producer a standard deviation of the yield that increases 
proportionally with the production and linearly with allocated budget. 

This paper introduces a solution for a comprehensive problem of operating 
manufacturing with heterogeneous plants that differ by their investment-capacity tradeoff 
curves and their yield distributions. We consider: 1) monthly rigid demands (i.e., several 
orders with different due days given as a time series), 2) uncertain nonnegative demands 
with different expected amount and different variance of demand, and 3) random yield. The 
objective is to establish a global production plan that minimizes the total investment in the 
production plants, subject to monthly rigid deliveries and under pre-given chance 
constraints. 
 

2. Notation 
  

Let us introduce the following terms: 

}{ j  
 
- 

an index for the months, kj ,...,2,1= ; 

jO  
 
- 

the j 's monthly demand, kj ,...,2,1=  (a random variable with known 
distribution);   
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)1( jα−
 

 
- 

the lower bound probability (confidence level) for complete fulfillment of the 
monthly demand jO , 5.00 << jα , kj ,...,2,1= ; 

jt
 

 
- 

the time for supplying of the monthly demand jO , kttt ≤≤≤ ...21 ; 

}{i  
 
- 

an index for the plants, ni ,...,2,1= ; 

ip  
 
- 

the normal production quantity of plant i  up to the lead time kt  (a random 

variable with known expectation ( )ipE ), given that the normal budget 

)( ipEc  was allocated for plant i ; 

)( ipEc   
- 

the known deterministic budget that enables a normal production quantity 

ip , at plant i  for the planning horizon [ ]ktt ,1 ; 

( )ipσ  
 
- 

the known standard deviation of ip ;  

iP  
 
- 

the crash production quantity of plant i  up to the lead time kt  (a random 

variable with known expectation ( )iPE ), given that the crash budget )( iPEc  

was allocated for plant i ; 

)( iPEc
 

 
- 

the known deterministic budget that enables the crash production quantity 

iP  (capital P), at plant i  for the planning horizon [ ]ktt ,1 ;  
k
iq  

 
- 

the production quantity of plant i  for the planning horizon [ ]ktt ,1  (a 

random variable with expected value )( k
iqE , )()()( i

k
ii PEqEpE ≤≤ , that 

is dependent on the deterministic budget ic  allocated to the plant i );  

ic  
 
- 

the budget (a decision variable) that enables k
iq  production quantity of  

plant i  for the planning horizon [ ]ktt ,1 , )()( ii PEipE ccc ≤≤ ; 

,...,( 1cc =
 

 
- 

 
a vector of  the distributed budget among all plants. 

C  - the total budget allocated to all plant: ∑
=

=
n

i
icC

1

; 

 
kQ  

 
- 

the total production for the planning horizon [ ]ktt ,1  (a random variable), 

∑
=

=
n

i

k
i

k qQ
1

; 

kQα  
- the α  quintile of kQ 's distribution, 5.00 << α ; 

jQ  
- the total production at the horizon [ ]ktt ,1 ; ∑

=

=
n

i

j
i

j qQ
1

, kj ,...,2,1= . 

 

3. Problem Definition 
 

We consider n  plants (production units) that can produce the same product. Each 

plant i , ni ,...,2,1=  has a stochastic production capability k
iq  and needs a deterministic 

budget ic , )()( ii PEipE ccc ≤≤ , in order to activate the production capability k
iq  for the 

planning horizon [ ]ktt ,1 . 
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We assume that the relation for the expected production capability, given that ic  

budget was allocated for plant i , )( i
k
i cqE , is given by a continuous linear increasing 

curve: 

iiii
k
i ccqE γϕ +=)(

, ( )1  

where 
)()(

)()(

ii pEPE

ii
i cc

pEPE
−
−

=ϕ , 
)()(

)()(

ii

ii

pEPE

ipiP
i cc

PEcpEc
−

−
=γ .  

We also assume that the randomness in the production capability of plant i  is 

realized only once, immediately after the investment of ic , ni ,...,2,1= . Therefore the 

production quantity of the plant i  from the beginning of the production and until the time 

jt , kj ,...,2,1= , ni ,...,2,1=  is defined according to the following equation ( )2 .   

k
i

k

jj
i q

t
t

q = . ( )2  

Therefore, for all kj ,...,2,1= , ni ,...,2,1=  we have 

( )iii
k

j
i

j
i c

t
t

cqE γϕ +=)( . ( )3  

In addition, we assume a normal distribution of the total output jQ , kj ,...,2,1=  

of all n  plants, statistical independence among the plants and nonnegativity, i.e. 

( ) ( ) 04 >− ii ppE σ , ( ) ( ) 04 >− j
i

j
i qqE σ  for ni ,...,2,1=  and kj ,...,2,1= . We emphasize 

that despite this assumption, it is not necessary to assume any specific distribution for the 

random variables iP , ip , j
iq , ni ,...,2,1= , kj ,...,2,1=  since normality of the random 

variables jQ  can be justified by its definition together with  the Central Limit Theorem.  

Following Laslo (2003) we presume a fixed coefficient variance (FCV) model. This 
model assumes that the expected production quantity and the production quantity's standard 
deviation are both affected by additional budget, but the production coefficient variance is 

constant for any budget ic  and in any time:  

( ) )(
)()(

i

i

i
k
i

i
k
i

i p
pE

cq
cqE

K
σσ

== , ni ,...,1= , ( )4  

in other words, wherever the average performance is increased, the standard deviation is 
also increased and at the same rate. 

By assumptions ( )2  and ( )4  for all kj ,...,2,1= , ni ,...,2,1=  we have 

( ) )(
)()(

i

i

i
j

i

i
j

i
i p

pE
cq
cqE

K
σσ

== . ( )5  

Finally we assume that for each point of time jt , kj ,...,2,1= , a new delivery order 

jO  with random demand is set for the product. Hence there are 1≥k  stochastic delivery 

orders for the product of the plants. An order jO  is a random variable with known 
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distribution and must be supplied with probability of at least )1( jα− , kj ,...,2,1= . The 

delivery order jO  does not depend on the production quantities of plants. We study here in 

details the case where for all kj ,...,2,1= , the distribution of the jO  are normal distributed 

with known expected value and variance. For other situations (non-normal distribution for 

the delivery orders jO ) the analysis can be more complex but is based on similar 

considerations.    
The main objective of the problem is to find the minimal budget and its distribution 

among all plants in order to ensure the fulfillment of all orders subject to the required 
probabilities.  

 

4. The Solution 
 

For all kj ,...,2,1=  we need to fulfil the following inequalities 

( ) j
jj cOOQP α−≥++> 1...1  , kj ,...,2,1= , 

or equivalently   

j

j

m

mj cOQP α−≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
>− ∑

=

10
1

 , kj ,...,2,1=  . ( )6  

Since jQ  and ∑
=

j

m

mO
1

 are independent normally distributed random variables, the random 

variable ∑
=

−
j

m

mj OQ
1

 also has a normal distribution with the following expectation and 

variance: 

( ) ( ) ( ) ( )∑ ∑∑∑∑
= ====

−+=−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

n

i

j

m

m
iii

k

j
j

m

m
n

i

j
i

j

m

mj OEc
t
t

OEcqEcOQE
1 1111

γϕ , 

( ) ( ) ( ) ( )∑ ∑∑∑∑
= ====

+
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

n

i

j

m

m

i

iii

k

j
j

m

m
n

i

j
i

j

m

m
j OV

K
c

t
t

OVcqVcOQV
1 1

2

22

111

γϕ
. 

By ( )6  we get 0
1

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− ∑

=
j

j

m

mj OQ
α

, where 

j

j

m

mj OQ
α

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− ∑

=1

 is the jα  quintile of the 

∑
=

−
j

m

mj OQ
1

 distribution. Straightforwardly we have: 

( ) ( ) ( ) ( )∑ ∑∑∑∑
= ====

+
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

n

i

j

m

m

i

iii

k

j
j

m

m
n

i
iii

k

j
j

m

mj OV
K

c
t
t

ZOEc
t
t

OQ
j

j
1 1

2

22

111

γϕ
γϕ α

α

, ( )7  

where 
j

Zα  is the jα  quintile of the normal standard distribution.  

Therefore, by ( )6 , ( )7 , the solution for the problem is equivalent finding the vector 

of optimal budgets ),...,( 1 nccc =  that minimizes the total budget ∑
=

=
n

i
icC

1

, 
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subject to: 

( ) ( ) ( ) ( )∑∑ ∑∑
== ==

≥+
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

j

m

m
n

i

j

m

m

i

iii

k

j
n

i
iii

k

j OEOV
K

c
t
t

Zc
t
t

j
11 1

2

22

1

γϕ
γϕ α ,   kj ,...,2,1= , ( )8  

and subject to the budget constraints: 

( ) ( ) , 1,...,
i iE p i E Pc c c i n≤ ≤ =

 
The following inequality ( )9  guarantees that any additional budget in each plant i , 

ni ,...,2,1=  increases the probability that the total production will fulfil the cumulative 

delivery order constraints until time jt  for all kj ,...,2,1= . 

Statement 1. If   

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
−≥⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +∑ ∑
= =

2
1 1

22

i

iii
n

i

j

m

m

j

k

i

iii

K
c

ZOV
t
t

K
c

j

γϕγϕ
α , ( )9  

for all ni ,...,2,1= , kj ,...,2,1= , then the quintile 

j

j

m

mj OQ
α

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− ∑

=1

 is an increasing 

function of ic  for all ni ,...,2,1= , kj ,...,2,1= . 

The following Proposition 1 provides the necessary and sufficient conditions for the 
existence of a unique solution for the considered problem. 
Proposition 1. 

If for all ni ,...,2,1= , kj ,...,2,1= , equation ( )9  holds then the considered 

problem has a unique solution if and only if for all kj ,...,2,1=  

( ) ( ) ( ) ( )∑∑ ∑∑
== ==

≥+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

j

m

m
n

i

j

m

m

i

i

k

j
n

i
i

k

j OEOV
K
PE

t
t

ZPE
t
t

j
11 1

22

1
α . ( )10  

 

Proposition 1, i.e., inequalities ( )9  and ( )10  guarantee the existence of a unique optimal 

solution for the considered problem.  
In order to solve the considered chance-constrained programming problem, we can 

solve its certainty equivalent as a mathematical programming problem as defined by ( )8 . 

But since the total budget is bounded: ( ) ( )∑∑
==

≤≤
n

i
PE

n

i
pE ii

cCc
11

 and since in any real life 

problem a budget is not a continuous entity, the budget can be considered as if it has a finite 

number of alternative values. Hence, after verifying by ( )9 , ( )10  the existence and 

uniqueness of the optimal solution, one can attain it by examination of all the finite integer 
possibilities for budget allocation (dollars or cents), satisfying the constraints. Alternatively, 
the optimal solution can be obtained by optimization software package.  
Remark 1. 

 A deterministic delivery order jO  can be considered as a "normal" random 

variable with expectation ( ) jj OOE =  and variance ( ) 0=jOV . Therefore the case where 
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all the delivery orders are deterministic is only a special case of the considered problem and 
our analysis is also valid for this case. 

 

5. Numerical Examples 
 

We consider a situation with 3 plants and 2 monthly demands: 3=n , 2=k .  

The upper bound probabilities jα  for full supplying of demands jO , 2,1=j  are: 

001.01 =α , 025.02 =α . That is, 09023.3001.0 −=Z , 95996.105.0 −=Z . 

Also given: 

( ) 00.251 =pE , ( ) 00.2201 =PE , ( ) 00.75
1

=pEc , ( ) 00.250
1

=PEc , ( ) 00.81 =pσ , 

( ) 00.502 =pE , ( ) 00.2502 =PE , ( ) 00.100
2

=pEc , ( ) 00.350
2

=PEc , ( ) 00.22 =pσ , 

( ) 00.503 =pE , ( ) 00.2003 =PE , ( ) 00.25
3

=pEc , ( ) 00.450
3

=PEc , ( ) 00.53 =pσ , 

501 =t , 1002 =t . 

Then we have: 

11429.11 =ϕ , 57140.581 −=γ , 12500.3
8
25

1 ==K , 

80000.02 =ϕ , 00000.302 −=γ , 00000.252 =K , 

35294.03 =ϕ , 17650.413 =γ , 00000.103 =K . 

First we consider a situation with deterministic monthly demands: 

00.2001 =O , 00.1502 =O . That is, by Remark 1, ( ) jj OOE = , ( ) 0=jOV , 2,1=j . 

By a straightforward calculation we find that the equations ( )9 , ( )10  are valid for this 

example. Therefore by Proposition 1 there is a unique optimal solution of the considered 
problem. By examination of all the finite integer possibilities for budget allocation, satisfying 

the constraints ( )8 , we get this optimal vector of the budget allocation among all plants: 

( ) ( )37.373,00.350,70.114,, 321 =ccc , 

and the total optimal (minimal) budget allocated is 07.838
3

1
== ∑

=i
icC . 

Secondly we consider the same situation as in the previous case, but with stochastic 

normal distributed demands such that: ( )21 20,200~ NO , ( )22 15,150~ NO .  

By a straightforward calculation we find that the equations ( )9 , ( )10  are valid for this 

example too. Therefore by Proposition 1 there is a unique optimal solution for the 
considered problem. By examination of all the finite integer possibilities for budget 

allocation, satisfying the constraints ( )8 , we get this optimal vector of budget allocation 

among all factories: 

( ) ( )00.450,00.350,42.204,, 321 =ccc , 

the total optimal (minimal) budget allocated to all factories is 
3

1
1,004.42i

i
C c

=

= =∑ . 
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Finally, we consider the same situation as in the previous case, but with stochastic 

uniform distributed delivery orders such that: ( )230,170~1 UniO , ( )175,125~2 UniO .  

Based on analysis which is similar to that presented for two previous examples, and 
by examination of all the finite integer possibilities for budget allocation we find that the 
optimal vector of the budget allocation among all plants: 

( ) ( )00.450,00.350,98.148,, 321 =ccc , 

the total optimal (minimal) budget allocated to all plants is 98.948
3

1
== ∑

=i
icC . 

 

6. Summary and Conclusions 
 

This paper gives a comprehensive analysis for the problem and a procedure that 
can help management to solve it, i.e., to determine how much budget is needed and how to 
distribute the budget among the plants in order to increase its capabilities and to guarantee 
the fulfillment of the orders under some chance constraints.  

The first step is to verify that the problem has a feasible solution. This can be done 
by Proposition 1 that states roughly that the expected total capabilities of all plants must be 
sufficiently larger than the total cumulative orders at any time. We have proved that if the 

allocation of the crashed budgets )( iPEc  to each plant 1,...,i n=  is a feasible solution, then 

the problem has a unique optimal solution. The optimal solution can be obtained by a 
discrete search among the bounded budget or by optimization software package. 

Although we assumed normal distributions for all the random variables, we 
demonstrated that even if the order quantities have non normal distributions, the considered 
problem can be solved in a similar way. Solutions for normal distributions and uniform 
distributions were presented through numerical examples.  
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