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Abstract: Structural serviceability is of uttermost importance for the overall performance of 
many common structures. As a rule, both the load effects (serviceability indicators due to 
loading) and admissible constraints (ensuring required structural performance) are random 
variables of considerable scatter and significant vagueness. Common experience indicates that 
a structure does not loose its ability to comply with specified performance requirements 
abruptly at a distinct point of the serviceability indicator, but gradually within a certain 
transition interval. Fuzzy-probabilistic methods are therefore employed to analyze the 
structural serviceability. 
As an example, serviceability limit states of water retaining structures with respect to cracking 
are investigated in detail. Fuzzy probabilistic models are proposed to derive theoretical models 
for the limiting crack width. It is shown that the fuzzy probabilistic distribution of serviceability 
requirements may be used similarly as classical distribution function to specify the 
characteristic value of limiting crack width, to analyze reliability of crack width and to optimize 
structural design to achieve the minimum total costs. 
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1. Introduction 
 

Structural performance is becoming a fundamental concept of advanced 

engineering design in construction. However, performance requirements (including 

serviceability, safety, security, comfort, functionality) of buildings and engineering works are 

often affected by various uncertainties that can hardly be entirely described by traditional 

probabilistic models. As a rule, transformation of human desires, particularly those 

describing occupancy comfort and aesthetic aspects, to performance (user) requirements 
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often results in an indistinct or imprecise definition of the technical criteria for relevant 

performance indicators (for example the limiting defection or crack width). 

Thus, in addition to natural randomness of basic variables, performance 

requirements may be considerably affected by vagueness in the definition of technical 

criteria. Two types of uncertainty of performance requirements are therefore identified here: 

randomness, handled by commonly used methods of the theory of probability, and, 

fuzziness, described by basic tools of the recently developed theory of fuzzy sets (Brown and 

Yao 1983). Similarly as in the previous studies (Holický 2006), the fundamental condition of 

structural performance, RS ≤ , between an action effect S and a relevant performance 

requirement R , is considered assuming the randomness of S and both the randomness and 

fuzziness of R . In this study the performance resistance R  is analysed in detail. 

An illustrative example of continuous vibration in offices is used throughout the 

paper to clarify general concepts. In this example, it is shown that it is impossible to identify 

a distinct value of an appropriate indicator (root mean square value of acceleration) that 

would separate a satisfactory from an unsatisfactory performance (Holický et al. 2009). 

Typically, a broad transition region is observed, where the building is gradually losing its 

ability to perform adequately and where the degree of damage (inadequate performance or 

malfunction) gradually increases. 

 

2. Fuzzy Probabilistic Models of Performance Requirements 

 
Fuzziness due to vagueness and imprecision in the definition of performance 

requirement R  is described by the membership function ( )xvR  indicating the degree of the 

membership of a structure in a fuzzy set of damaged (unserviceable) structures (Holický 

2006); here x  denotes a generic point of a relevant performance indicator (a deflection or a 

root mean square of acceleration) considered when assessing structural performance. 

Common experience indicates that a structure is loosing its ability to comply with specified 

requirements gradually within a certain transition interval 21 , rr . 

The membership function ( )xvR  describes the degree of structural damage (lack of 

functionality). If the rate  ( ) dxxdvR  of the “performance damage” in the interval 21 , rr  is 

constant (a conceivable assumption), then the membership function ( )xvR  has a piecewise 

linear form as shown in Figure 1. It should be emphasized that ( )xvR  describes the non-

random (deterministic) part of uncertainty in the requirement R  related to economic and 

other consequences of inadequate performance. The randomness of R  at any damage level 

( )xvv R=  may be described by the probability density function ( )vxRϕ  (see Figure 1), for 

which a normal distribution having the constant coefficient of variation 10.0=RV  is 

considered in the following.  
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Figure 1.  The fuzzy probabilistic model of the performance requirement R  

 

The transition region 21 , rr , where the structure is gradually losing its ability to 

perform adequately and its damage increases, may be rather broad, depending on the 
nature of the performance requirement. For common serviceability requirements 

(deflections) the upper limit 2r  may be a multiple of the lower limit 1r  (for example, 

12 2 rr ⋅= ). 

 The fuzzy probabilistic measures of structural performance is defined as the 

damage function ( )xRΦ  being the weighted average of damage probabilities reduced by 

the corresponding damage level (Holický 2006) 
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where N  denotes a factor normalizing the damage function ( )xRΦ  to the 

conventional interval 1,0  (see Figure 1) and 'x  is a generic point of x . The density of the 

damage ( )xRϕ  follows from (1) as 
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  The damage function ( )xRΦ  and density function ( )xRϕ  defined by equation (1) 

and (2) may be considered as generalized distribution functions of the performance 

requirements R  that can be used similarly as classical probabilistic functions. 

 
3. Fuzzy Probability of Performance Failure 
 

The damage function ( )xRΦ  defined by equation (1) may be used similarly as the 

classical distribution function of structural resistance. If the action effect S  of a structural 

member is well-known and its probability density function ( )xSϕ  is available, the fuzzy 

probability of performance failure fπ  may be assessed as  

 

r1 0 x 
0.0 

0.5 

1.0 

νR (x) 

r2 

νR (x)  = 0.0 

ϕR (x|ν ) 

νR (x)  = 1.0
ϕR (x|ν ) 

ϕR (x|ν )
ΦR(x) 

ΦR(x) 

νR(x) 



  
International Symposium on Stochastic Models  

in Reliability Engineering, Life Sciences and  
Operations Management (SMRLO'10) 

 

 
470 

∫
∞

∞−

Φ= xxx RSf d)()(ϕπ . (3) 

The damage function ( )xRΦ  defined by equation (1) and the fuzzy probability of 

performance failure π  defined by equation (3) enable the formulation of various design 

criteria in terms of relevant randomness and fuzziness parameters. In addition, fuzzy 
probabilistic optimization can be used to specify the optimum structural design and 
appropriate fuzzy reliability level. However, adequate data for the specification of the 

fuzziness parameters 1r , 2r , the membership function ( )xvR  and its coefficient of variation 

RV  (describing the requirement R ) and the probability density ( )xSϕ  of the load effect S  

are needed. 

 
4. The Characteristic Value of Performance Requirement 
 

The characteristic value Kr  of the performance requirement R  can be determined 

as a specified fractile of the damage function ( )xRΦ  

( )kRk rΦ=π . (4) 

Here kπ  is the fuzzy probability of not achieving the characteristic value Kr . It may 

differ from the commonly accepted value 05.0=kπ  in the case of classical definition of 

probability. Previous studies (Holický 2006) based on the fuzzy probabilistic optimization 
indicate that the characteristic value of serviceability requirements (limiting value in design) 

corresponding to the probability 05.0=kπ  may not lead to the optimum reliability level.   

 
5. The Limiting Crack Width for Water Retaining Structures 

 
Water retaining structures are usually designed on the basis of crack width 

requirements. The limiting values are commonly within the interval from mmr 05.01 =  to 

mmr 2.02 =  (Holický et al. 2009). Considering these values as the deterministic lower and 

upper bounds of the transition region, the membership function ( )xvR , the damage function 

( )xRΦ  and the density function ( )xRϕ  defined by equations (1) and (2) are shown in Figure 

2. It should be mentioned that the transition region might be slightly shifted if the values 

mmr 05.01 =  and mmr 2.02 =  are considered as fractiles of the admissible crack width. 

Figure 2 also indicates the characteristic value of the limiting crack width mmrk 082.0=  

corresponding to the conventionally accepted probability 05.0=kπ  of not achieving kr , if 

the probability 20.0=kπ , then the characteristic value is mmrk 115.0= . 
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Figure 2. The membership function ( )xvR , the damage function ( )xRΦ  and the damage 

density function ( )xRϕ  for the transition region from mmr 05.01 =  to 

mmr 2.02 =  and 10.0=RV  
 

 

It follows from Figure 2 that the characteristic value mmrk 082.0=  is relatively 

close to the lower bound of transition region mma 05.0= . However, as indicated above, in 

the case of serviceability requirements the probability 05.0=p  may not be the optimum 

value used to define the characteristic serviceability resistance, for example the limiting crack 

width. 

Note that damage density may be well approximated by the Beta distribution 

having the mean mm15.0 , standard deviation mm039.0 , the lower bound mm02.0  and 

the upper bound mm238.0 . 

 

6. Fundamental Concepts in Eurocodes 
 

6.1. Crack Width 

Verification of cracking is mostly based on semi empirical formulae supported by 

experimental evidence, experience and structural detailing (EN 1992-1-1 (2004), Narayanan 

and Beeby (2005)). A number of different approaches leading to considerably diverse results 

may be found in literature and codes of practice ((EN 1992-1-1 (2004), EN 1992-1-3 

(2006), Narayanan and Beeby (2005)). The following probabilistic study is based on the 

concepts accepted in Eurocodes. Basic relationship for the assessment of crack width w  is 

written in the form of simple compatibility condition (EN 1992-1-1 (2004), Narayanan and 

Beeby (2005)) 

mrmm Sw ε= , (5) 

where mw  is the mean crack width, rmS  the mean crack spacing and mε  the mean 

strain in between the two adjacent cracks. The mean crack spacing rmS  can be assessed 

using a semi empirical formula (EN 1992-1-1 (2004), Narayanan and Beeby (2005))  
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effrm kkcS ρφ⋅⋅⋅+= 2125.02 , (6) 

where c  denotes concrete cover, 1k  is a coefficient taking into account bond 

properties of the reinforcement (a value 8.0  for high bond and 6.1  for smooth bars), 2k  is a 

coefficient depending on the form of stress distribution (a value 5.0  for bending, 0.1  for 

pure tension), φ  is the bar diameter and effρ  the effective reinforcement ratio effcs AA , . 

Here sA  is the reinforcement area and effcA ,  is the effective concrete area surrounding the 

reinforcing bars. Detailed instructions on how to determine the area effcA ,  are provided in 

EN 1992-1-1 (2004). Note that effcA ,  is usually smaller than the concrete area cA  

considered normally for the reinforcement ratio of flexural or compressive members, and, 

consequently, the effective reinforcement ratio effρ  may be greater than the commonly used 

reinforcement ratio ρ . 

The mean strain mε  for reinforced concrete members (non prestressed) may be 

calculated from the expression (EN 1992-1-1 (2004), Narayanan and Beeby (2005)) 

s

s

s

effeffeeffct,ts 6.0
/)1(

EE
fk

cmsmm
σρρασ

εεε ≥
+−

=−= , (7) 

where smε  is the mean strain in reinforcing bars, cmε  the mean strain in 

surrounding concrete, sσ  is the stress in tension reinforcement at the crack section, tk  is a 

factor dependent on the duration of the load ( 6.0  for short term loading, 4.0  for long term 

loading), effctf ,  is the mean of the tensile strength of the concrete, effective at the time when 

the cracks may first develop ( ctmeffct ff ≤, ), and eα  is the ratio modulus cms EE . 

 

6.2. Design Condition 

To verify the mean crack width, mw  is multiplied by the factor ( )7.1=wβ  and 

compared with the limiting crack width dw . Thus, it is required that 

limwww mwk <≈ β . (8) 

It is assumed that the product mwk ww β≈  is called the characteristic value of the 

crack width, which is supposed to be equal to the upper 5% fractile of the crack width w . 

The required value limw  is considered as a deterministic quantity (for water retaining 

structures up to mm2.0 ). 

 

6.3. Load Combinations 

The quasi-permanent combinations of actions are usually considered in design 

verification of crack width as follows (EN 1990 (2002)): 

kkk QLG ψ++ . (9) 
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Here kG  denotes the characteristic value of the permanent load G , kL  stands for 

the characteristic value of the liquid load L  (considered similarly as the permanent load, 

kL L=μ ), kQ  is the characteristic value of the variable load Q , ψ  is the combination 

factor for the variable load Q . In some cases (for example in case of a wall of water 

retaining structures) the liquid load L  can be considered only (effect of other loads are 

negligible). In the design verification of ultimate limit states the partial factors for all actions 

should be considered as recommended in relevant codes, for the liquid load L  the partial 

factor should be considered as 2.1=γ  as recommended in EN 1992-3 (2006). 

 

7. Probabilistic Formulation 
 

7.1. The Limit State Function 

Random behavior of crack width w can be analyzed using equations (5), (6) and (7), 

where all input quantities are considered as random variables. Equation (5) can be thus 

written as 

εrSw = . (10) 

Here w  denotes the crack width, rS  is the crack spacing and ε  is the strain as 

random variable. The crack spacing rS  is assumed to be described by equation (6), the 

strain ε  by equation (7) assuming that all input quantities are considered as random 

variables having the means equal to nominal values. In equation (7) the lower bound 

ss Eσ⋅6.0  is not considered in the following reliability analysis.  

The theoretical model for the strain ε  is partly based on experimental observation. 

Its uncertainty is taken into account by a factor θ  expressing model uncertainty. The limit 

state function g  may be then written in a simple form 

wwg θ−= lim . (11) 

Here the random crack width is given by equation (10), (6) and (7). The model 

uncertainty θ  is introduced as an additional random variable (having the mean equal to 

unity and the coefficient of variation 10%). In the following analysis the limiting crack width 

limw  is considered as a fuzzy random serviceability resistance R  analysed above. It is 

defined by general equation (1) and described by the damage function (2) or the damage 

density function (3). A particular form of these functions relevant to the foreseen example of 

water retaining structures is shown in Figure 2.   

 

7.2. Theoretical Models of Basic Variables 

All the quantities entering equations (6), (7) and (11) including the model 

uncertainty θ  are in general random variables. Some of them are, however, approximated 

by deterministic values (those having relatively small variability). Theoretical models 

(including the type of distribution and their parameters) of all variables used in the following 

reliability analysis are indicated in Table 1.  
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Table 1.  Theoretical models of basic variables 

Name Symbol 
X 

Unit Distribution Char. Value 
Xk 

The mean 
μX 

St. dev. 
σX 

Width b m Det 1.00 1.00 0 
Cover c m Gamma 0.04 0.04 0.01 
Reinf. diam. φ m Det  0.012 to 0.03 0.012 to 0.03 0 
Tensile strength fct MPa LN 2.9 2.9 0.55 
Steel mod. Es GPa Det 200 200 0 
Concrete mod. Ec GPa Det 33 33 0 
Creep coeffic. ϕ - Det 2 2 0 
Coefficient k1 - Det 0.8 0.8 0 
Coefficient k2 - Det 1 1 0 
Coefficient kt - Det 0.4 0.4 0 
Limiting width wlim m Beta*) 0.0000823 0.00015 0.000039 
Pressure  Lk MPa N 0.07 0.07 0.0035 
Diameter D m Det 28 28 0 
Action uncer. θE - LN 1.00 1.00 0.10 

*) Parameters of the Beta distribution are derived from the above fuzzy probabilistic analysis of the limiting crack 
widths considering the lower limit value of the transition region mm05.0  and the upper limit mm2.0 . The lower 

bound of Beta distribution mma 02.0=  and the upper bound mmb 238.0=  

 
The following notations are used in Table 1: Normal - for normal distribution, 

Gamma - for gamma distribution, LN - for log-normal distribution, Det - for deterministic 

value. Note that the model uncertainty θ  is supposed to cover uncertainties in some 
variables that are indicated as deterministic quantities. 

It follows from Table 1 that the limiting crack width limw  is approximated by Beta 

distribution indicated in the above general analysis of fuzzy random properties of the 

serviceability resistance R .  

 
8. Reliability Analysis 
 
8.1. An Example of Water Reservoir 

As an example of probabilistic design for cracking a cylindrical water reservoir with 

diameter mD 28= , height m7  (the maximum water pressure 270 mkNLk = ) and wall 

thickness m25.0  is considered (Holický et al. 2009). Crack width is analyzed in the wall only 

under pure tension due to water pressure. The maximum characteristic force in the wall is 
thus   

kNLDN ks 9802 =⋅= . (12) 

The basic reinforcement area 2
0 0027.0 mA =  in the wall is determined 

considering the ultimate limit state of tensile capacity of the wall using the partial load factor 

2.1=γ , thus the design force in the wall is kNNN sd 176,1== γ .  

It is common that the basic reinforcement 0A  must be increased to an acceptable 

value A  in order to control cracking. For the data given in Table 1 the enhancement factors 

given by ratio 0AA  follow from general equations (5) to (7). For the deterministic design for 

crack width control according to EN 1992-1-1 (2003) the enhancement of the deterministic 

crack limit 20.0lim =w  is more than a factor of 2 , and for the crack limit 05.0lim =w  it is 
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more than 5 , depending on the steel diameter. In the following analysis these outcomes of 
the deterministic calculation are compared with results of probabilistic analysis. 
 
8.2 Probabilistic Analysis 

Crack width of the reservoir wall exposed to pure tension is analyzed considering 
the limit state function (11) and theoretical models of basic variables given in Table 1. 

Various diameters of the reinforcing bars φ  (from 12  to mm30 ) are considered. The 

limiting crack width limw  is generally described by the Beta distribution. Note, however, that 

this approximation is derived from deterministic limiting crack widths mmw 05.0lim = and 

mmw 20.0lim = . Figure 3 shows the variation of the failure probability with increasing area 

0AA  within the broad range from 1 to 5 .  

It follows from Figure 3 that without substantial enhancement of the reinforcement 

area the crack width would exceed the required limiting width limw  with a very high 

probability. The basic reinforcement area 0A  should be increased approximately by the 

factor of 2  to comply with the required crack width. Figure 3 also indicates the fuzzy 

probability of failure 05.0=fπ  accepted in EN 1992-1-1 (2004) for verification of 

serviceability limit states including crack widths. 
Desired enhancement of the reinforcement depends obviously on the reinforcing 

bars´ diameter φ . Figure 3 shows that for mm12=φ  the reinforcement ratio 0AA  should 

be about 3.2 , for mm30=φ  the reinforcement ratio 0AA  should be about 2.3 . This 

finding induces a crucial question concerning the required reliability level. In some cases the 
reliability may be decreased (target failure probability increased), in other cases (for example 
in case of a vital reservoir) it may be increased (target failure probability decreased). It 
appears that the methods of probabilistic optimization may provide a valuable guidance.  

Figure 3. Variation of the probability of failure with the reinforcement area ratio 

0AA=ω for selected reinforcement diameter φ  
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9. Probabilistic Optimization 
 
Probabilistic optimization may be effectively used to specify the optimum value of 

some basic variables (decisive parameters) and the target reliability of a structure. In some 
cases of the design of a concrete structure for cracking the objective function may be written 
in a simple form as the total cost  

( ) ( )ωπωω fftot CCCC ++= 10 , (13) 

where      ( )ωtotC  denotes the total cost, 

0C  - the initial cost, 

1C  - the margin cost per unit of the decisive parameter ω , 

fC  - the discounted cost serviceability failure, 

( )ωπ f  - fuzzy probability of failure, 

ω  - the decision parameter. 

 

 

Here the initial cost 0C  is assumed to be independent of parameter ω . The 

product ω1C  denotes the additional cost due to an increase of parameter ω  and ( )ωπ ffC  

the expected malfunctioning cost. The discounted cost of serviceability failure fC  takes into 

account the time when the crack width w  exceeds the limit value limw . The probability of 

failure ( )ωπ f  is considered as a function of the parameter ω . Instead of the total cost 

( )ωtotC  given by equation (13) the normalized ( )ωκ tot  may be considered 

( ) ( )[ ] ( ) 110 CCCCC fftottot ωπωωωκ +=−= . (14) 

It follows from the first derivative of ( )ωκ tot  that the necessary condition for the 

optimum parameter optω  can be written as 

( ) ff CCP 1−=∂∂ ωω . (15) 

In the design of a concrete structure for cracking the reinforcement area A  is 

optimized. A generic value of A  may be introduced through the reinforcement ratio 

0AA=ω , where the basic value 0A  is given by the ultimate limit state design. The 

optimum value 0AAoptopt =ω  can be assessed from the minimum of the standardized cost 

( )ωκ tot  given by equation (14) or directly from the necessary condition (15). 

Figure 4 shows the variation of the reliability index β  and the total standardized 

costs ( )ωκ tot  given by equation (14) with the reinforcement area ratio 0ss AA=ω . It 

follows from Figure 4 that the optimum parameter optω  increases with the cost ratio 

1CC f ; for 11 =CC f , 0.1=optω , for 000,11 =CC f , 3.4=optω . Thus, in general, the 

reinforcement area A  needs to be substantially increased to reach the minimum total cost 

( )ωκ tot .  
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Figure 4. Variation of the total normalized cost ( )ωκ  and reliability index β  with the  

reinforcement ratio ω  for the reinforcement diameter mm16=φ  

 

Figure 4 also indicates that the reliability index β  is within a broad interval from 0  

to 5.3 . Thus, for high costs of serviceability failure ( 000,11 =CC f ) the optimum reliability 

levels reach the commonly recommended levels for the ultimate limit states. Obviously, an 

appropriate reliability level depends on the cost ratio 1CC f , which has to be assessed 

taking into account specific conditions of a particular structure. 

 
10. Concluding Remarks 
 

(1) Performance requirements are commonly specified by quantities of a random and 
vague nature. 

(2) The damage function and damage density functions are basic fuzzy probabilistic 
tools for the description of random and vague serviceability requirements. 

(3) The characteristic value or serviceability requirements may be defined as a fractile of 

the fuzzy probabilistic distribution, the probability 05.0=p  may not be the optimum 

value. 
(4) The fuzzy probabilistic distribution of serviceability requirements may be used 

similarly as a classical distribution function to analyze reliability level and to optimize 
structural design.  

(5) For water retaining structures the basic reinforcement area A  (given by ultimate 
limit states) needs to be substantially increased to reach the limiting crack width. 

(6) The optimum parameter 0AAoptopt =ω  increases with the cost ratio 1CC f  of the 

malfunctioning cost fC  to the cost per unit of the reinforcement area 1C  (for 

000,11 =CC f , the optimum optω  can be about 0.4 ). 
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(7) The optimum reliability index can be expected within the broad interval from 0  to 

5.3  depending on the cost ratio 1CC f . 

(8) Further research should be focused also on the assessment of economic 
consequences of a serviceability failure when the crack width exceeds the limiting 
value.  
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