

Quantitative Methods Inquires

270

A GENETIC ALGORITHM BASED RELIABILITY
REDUNDANCY OPTIMIZATION FOR INTERVAL VALUED

RELIABILITIES OF COMPONENTS1

L. SAHOO
Department of Mathematics, Raniganj Girls’ College, Raniganj-713347, India

E-mail: lxsahoo@gmail.com

A.K. BHUNIA
Department of Mathematics, The University of Burdwan, Burdwan-713104, India

E-mail: math_akbhunia@buruniv.ac.in

D. ROY
Centre for Management Studies, The University of Burdwan, Burdwan-713104, India

E-mail: dr.diliproy@gmail.com

Abstract: The goal of this paper is to solve the constrained redundancy allocation problem of
series-parallel/parallel-series/complex system with the interval valued reliability of each
component. For maximizing the overall system reliability under limited resource constraints,
the problem is formulated as an unconstrained integer programming problem with interval
coefficients by two different penalty techniques. To solve the transformed problem, we have
developed two different real coded GAs for integer variables with tournament selection,
uniform crossover, uniform mutation and different fitness functions based on penalty
techniques. As a special case, considering the lower and upper bounds of the initial valued
reliabilities of the component as the same, the corresponding problem has been solved. To
illustrate the model, some numerical examples have been solved by our developed GAs and
the results have been compared. Finally, to study the stability of our developed GAs with
respect to the different GA parameters (like, population size, crossover and mutation rates),
sensitivity analyses have been shown graphically.

Key words: Redundancy allocation; Complex system; Reliability optimization; Genetic
algorithm; Interval numbers; Order relations; Penalty technique

1. Introduction

While advanced technologies have raised the world to an unprecedented level of

productivity, our modern society has become more delicate and vulnerable due to the
increasing dependence on modern technological system that often require complicated
operations and highly sophisticated management. From any respect, the system reliability is
a crucial measure to be considered in system operation and risk management. When
designing a highly reliable system, there arises an important question how to obtain a
balance between the reliability and other resources e.g., cost, volume and weight. As a
result, addition of redundant components or increase of component reliability leads to the
increase of the system reliability. In the last few decades, optimization problems including
redundancy allocation have been treated by many researchers as integer nonlinear

Quantitative Methods Inquires

271

programming problems with one or several resource constraints [1]. During the last two
decades, numerous reliability design techniques have been introduced. These techniques can
be classified as implicit enumeration, dynamic programming, branch and bound technique,
linear programming, Lagrangian multiplier method, heuristic methods and so on. To solve
this type of problem, one may refer to the works of Ghare and Taylor[2], Tillman et al.[3],
Nakagawa et al.[4], Tzafestas [5], Shantikumar and Yao[6], Misra and Sharama[7],
Sundarajan[8], Chern[9],Ohtagaki et al. [10] ,Sun and Li[11], Ha and Kuo[12], Gen and
Yun[13].Tillman and Kuo et al.[14] have extensively reviewed the several optimization
techniques for system reliability design in their books. In those works, the reliabilities of the
system components are assumed to be known at a fixed positive level which lies in the open
interval (0,1) . However, in real life situations, the reliabilities of these individual components
may vary due to different reasons. Any technology cannot produce different components
with exactly identical reliabilities. Moreover, the human factor, improper storage facilities
and other environmental factors may affect the reliabilities of the individual components.
Therefore it is sensible to treat the component reliabilities as positive imprecise numbers in
open interval (0,1) , instead of fixed real numbers. To tackle the problem with imprecise
numbers, generally stochastic, fuzzy and fuzzy-stochastic approaches are used. In stochastic
approach, the parameters are assumed as random variables with known probability
distribution. In fuzzy approach, the parameters, constraints and goals are considered as
fuzzy sets with known membership functions or fuzzy numbers. On the other hand, in fuzzy-
stochastic approach, some parameters are viewed as fuzzy sets and other as random
variables. However, for a decision maker to specify the appropriate membership function for
fuzzy approach and probability distribution for stochastic approach and both for fuzzy-
stochastic approach is a formidable task. To overcome these difficulties for representation of
imprecise numbers by different approaches, one may represent the same by interval number
as it is the best representation among others. Due to this new representation, the objective
function of the reduced redundancy allocation problem is interval valued, which is to be
maximized under given constraints.

In this study, we have considered GA-based approaches for solving reliability
optimization problems with interval objective. As objective function of the redundancy
allocation problem is interval valued, to solve this type of problem by GA method, order
relations of interval numbers are essential for selection/ reproduction operation as well as
for finding the best chromosome in each generation. Recently, Mahato and Bhunia[15]
proposed the modified definitions of order relations with respect to optimistic and pessimistic
decision maker’s point of view for maximization and minimization problems.

In this paper, we have considered the problem of constrained redundancy
allocation in series system, hierarchical series-parallel system and complex or non-parallel-
series system with interval valued reliability components. The problem is formulated as a
non-linear constrained integer programming problem with interval coefficients for
maximizing the overall system reliability under resource constraints. During the last few
years, several techniques were proposed for solving constraints optimization problem with
fixed coefficient with the help of GAs[16-19]. Among them, penalty function techniques are
very popular in solving the same by GAs [13, 16, 19]. This method transforms the
constrained optimization problem to an unconstrained optimization problem by penalizing
the objective function corresponding to the infeasible solution. In this work, to solve the
constrained optimization problem we have converted it into unconstrained one by two
different type of penalty techniques and the resulting objective function would be interval
valued. So, to solve this problem we have developed two different GAs for integer variables
with same GA operators like tournament selection, uniform crossover, uniform mutation and
elitism of size one but different fitness function depending on different penalty approaches.
These methods have been illustrated with some numerical examples and to test the
performance of these methods, results have also been compared. As a special case
considering the lower and upper bounds of interval valued reliabilities of components as
same, the resulting problem becomes identical with the existing problem available in the
literature. This type of redundancy allocation problem with fixed valued of reliabilities of

Quantitative Methods Inquires

272

components have been solved and illustrated with some existing numerical examples.
Finally, to study the stability of our developed GAs for interval valued objective with respect
to different GA parameters, sensitivity analyses have been performed and shown graphically.

2. Finite interval arithmetic

An interval number A is a closed interval defined

by [,] { : , }L R L RA a a x a x a x R= = ≤ ≤ ∈ , where La and Ra are the left and right limits,

respectively and R is the set of all real numbers. An interval A can also be expressed in
terms of centre and radius as , { : , }C W C W C WA a a x a a x a a x R= 〈 〉 = − ≤ ≤ + ∈ , where Ca

and Wa are, respectively, the centre and radius of the interval A i.e.,

() 2C L Ra a a= + and () 2W R La a a= − . Actually, each real number can be regarded as an

interval, such as for all x R∈ , x can be written as an interval [,]x x which has zero radius.
The basic arithmetical operations like, addition, subtraction, multiplication, division and
integral power of interval number are available in the book of interval analysis [20].

3. Order relations of interval numbers

In this paper, as we have considered some parameters as interval valued, to find

the optimal solution of the optimization problem so we have to discuss the order relations of
interval numbers for maximization problems. Let A and B be two closed intervals. These
two intervals may be one of the following three types.

Type1. Two intervals A and B are disjoint.
Type2. Intervals are partially overlapping.
Type3. Either A B⊂ or B A⊂
 In this case, we shall consider the definitions of order relations for maximization

problems developed recently by Mahato and Bhunia [15] in the context of optimistic and
pessimistic decision maker’s point of view.

4. Assumptions and Notations

To develop the paper, the following assumptions and notations have been

considered .

4.1 Assumptions
1. The component reliabilities are imprecise and interval valued.
2. The failure of any component is independent of that of the other components.
3. All redundancy is active redundancy without repair.

4.2 Notations
The following notations have been used in the entire paper.
m Number of resource constraints
n Number of stages of the system
x 1 2(, ,...,)nx x x

j Index for stage

jx Number of redundant components at stage j

jl Lower limit on jx

ju Upper limit on jx

jr Reliability of component at stage j which is interval valued

Quantitative Methods Inquires

273

jLr Lower limit of jr

jRr Upper limit of jr

ib Total amount of i th− resource available

()j iR x 1 (1) ix
jr− − , the reliability of stage j

()jLR x Lower bound of ()jR x

()jRR x Upper bound of ()jR x

jQ 1 jR−

SR =[,]SL SRR R System reliability which is interval valued

5. Problem formulation

Let us consider a system consisting of n components. Assume that the system and

its components have two states, viz. “operating state” and “failure state”. To represent the
state of the component j (1,2,3,...,j n=), let us define a binary variable jy as follows:

f the component jis in operating state,1, i
0, otherwise,jy

⎧
= ⎨

⎩

In this case, we get a set of 2n numbers of binary vectors with n components each.
Similarly to represent the state of the system, we define another binary variableφ given by

1, if thesystem is in operatingstate
0, otherwise

φ
⎧

= ⎨
⎩

Clearly the value of φ is 1 for some possibilities of y and 0 for other possibilities.

Therefore, in most of the reliability systems, we can explicitly define φ as a function of

y [say ()yφ]. So that the system state φ corresponding to the vector y is given by ()yφ φ= .

The function ()yφ is called the structure function of the system.

Now we consider a system with structure function ()yφ . A component j is said to

be relevant to function ()yφ either

1 1 1(,..., ,1, ,...,) 1 , and 1,2,...,j j n ry y y y y r j r nφ − + = ∀ ≠ =

or, 1 1 1(,..., ,0, ,...,) 0 , and 1,2,...,j j n ry y y y y r j r nφ − + = ∀ ≠ =

Definition 5.1 A system is called coherent if and only if the structure

function ()yφ satisfies the following conditions:

(i) ()yφ is a non-decreasing function for each jy ,

(ii) Each component is relevant to ()yφ .
Now, we consider a coherent system consisting of n subsystems and

m constraints, in which each subsystem has a number of redundancies and all components,
are stochastically independent. The objective of the redundancy allocation problem is to find
the number of redundancies in each subsystem in order to maximize the overall system
reliability subject to the given constraints. The corresponding problem formulated as an
Integer Non-Linear Programming (INLP) is as follows:

Maximize SR

 subject to the constraints
() , for 1,2,...,i ig x b i m≤ =

Quantitative Methods Inquires

274

j j jl x u≤ ≤ , for 1,2,...,j n=

Now if we consider the reliability of each component as interval valued, the earlier
mentioned problem is transformed to the non-linear constrained integer programming
problem with interval objective as follows:

Maximize [,]S SRLR R

subject to the constraints
() , for 1,2,...,i ig x b i m≤ =

j j jl x u≤ ≤ , for 1,2,...,j n=

Now, we shall discuss the different types of redundancy allocation problems.

5.2 Constrained redundancy optimization problem for a series system
It is well known that a series system (ref. Fig.1) with n independent components

must be operating only if all the components are functioning. In order to improve the overall
reliability of the system; one can use more reliable components. However, the expenditure
and more often the technological limits may prohibit an adoption of this strategy. An
alternative technique is to add redundant components as shown in Fig. 2. The goal of the
problem is to determine an optimal redundancy allocation so as to maximize the overall
system reliability under limited resource constraints. These constraints may arise out of the
size, cost and quantities of the resources. Mathematically, the constrained redundancy
optimization problem for such a system for fixed values of reliability can be formulated as
follows:

IN
OUT

Figure 1

Figure 2

Maximize
1

[1 (1)]j
n

x
S j

j

R r
=

= − −∏

subject to () , 1,2,...,i ig x b i m≤ =

and j j jl x u≤ ≤ , for 1,2,...,j n=

where (0,1)jr ∈

1 2 3 n

1
2 n1 2 n

1 2 n

Quantitative Methods Inquires

275

 Now if we consider component reliabilities as interval valued, i.e.,
[,]j jL jRr r r= then the above problem reduces to

Maximize
1

[,] [{1 (1) },{1 (1) }]j j
n

x x
SL SR jL jR

j

R R r r
=

= − − − −∏

subject to () , 1,2,...,i ig x b i m≤ =

and j j jl x u≤ ≤ , for 1,2,...,j n=

This is an INLP with interval valued objective.

5. 3. Hierarchical series-parallel system

A reliability system is called a hierarchical series parallel system (HSP) if the system

can be viewed as a set of subsystems arranged in a series parallel; each subsystem has a
similar configuration; subsystems of each subsystem have a similar configuration and so on.
For example let us consider a HSP system (10, 2)n m= = shown in the Fig. 3. This system
has a nonlinear and non separable structure and consists of nested parallel and series
system. The system reliability of HSP is given by

3 1 2 4 5 6 7 8 9 10{1 1 [1 (1)] (1)}(1)SR Q R R R R R Q Q Q R= − 〈 − − − 〉 − −

Mathematically, the constrained redundancy optimization problem for this system
for fixed values of reliability can be formulated as follows:

Maximize 3 1 2 4 5 6 7 8 9 10{1 1 [1 (1)] (1)}(1)SR Q R R R R R Q Q Q R= − 〈 − − − 〉 − −

subject to () , 1,2,...,i ig x b i m≤ =

and j j jl x u≤ ≤ , for 1,2,...,j n=

where (0,1)jr ∈

Now if we consider the component reliabilities as interval valued, i.e.,
[,]j jL jRr r r= then the above problem reduces to the following form:

3 3 1 1 2 2 4 4 5 5 6 6

7 7 8 8 9 9 10 10

Maximize[,] {1 1 (1 [,](1 [,][,]))[,] (1 [,][,])}
(1 [,][,][,])[,]

SL SR L R L R L R L R L R L R

L R L R L R L R

R R Q Q R R R R R R R R R R
Q Q Q Q Q Q R R

= − 〈 − − − 〉 −
−

subject to () , 1,2,...,i ig x b i m≤ =

and j j jl x u≤ ≤ , for 1,2,...,j n=

This is an INLP with interval valued objective.

Figure 3

5 6

7 8

9

10
1 2

3
4

Quantitative Methods Inquires

276

5.4 Complex System
When a reliability system can be reduced to series and parallel configurations,

there exist combinations of components which are connected neither in a series nor in
parallel. Such systems are called complex or non parallel series systems. This system is also
called the bridge system.

For example, let us consider a bridge system (5, 3)n m= = shown in Fig.4. This
system consists of five subsystems and three nonlinear and non-separable constraints. The
overall system reliability SR is given by the expression as follows:

5 1 3 2 4 5 1 2 3 4(1)(1) [1 (1)(1)]SR R QQ Q Q Q R R R R= − − + − − − ,

where ()j j jR R x= and 1j jQ R= − for all 1,...,5j = .

Mathematically, the constrained redundancy optimization problem for such
complex system for fixed values of reliability can be formulated as follows:

Maximize 5 1 3 2 4 5 1 2 3 4(1)(1) [1 (1)(1)]SR R QQ Q Q Q R R R R= − − + − − −

subject to () , 1,2,...,i ig x b i m≤ =

and j j jl x u≤ ≤ , for 1,2,...,j n=

where (0,1)jr ∈

Since the overall system has a complex structure, the objective function is also non-
linear and non-separable.

Now if we consider the component reliabilities as interval valued, i.e.,
[,]j jL jRr r r= then the above problem reduces to the following form as follows:

5 5 1 1 3 3 2 2 4 4

5 5 1 1 2 2 3 3 4 4

Maximize[,] [,](1 [,][,])(1 [,][,])
[,]{1 (1 [,][,])(1 [,][,])}

SL SR L R L R L R L R L R

L R L R L R L R L R

R R R R Q Q Q Q Q Q Q Q
Q Q R R R R R R R R

= − −
+ − − −

subject to () , 1,2,...,i ig x b i m≤ =

and j j jl x u≤ ≤ , for 1,2,...,j n=

This is an INLP with interval valued objective.

Figure 4

5.5 -out-of- k n System
A k out of n− − − system is an n -component system which functions when at

least k of its n components function. This redundant system is sometimes used in the place
of pure parallel system. It is also referred to as :k out of n G− − − system. An n -

component series system is a :n out of n G− − − system whereas a parallel system with n -

components is a 1 :out of n G− − − system. When all of the components are independent

1 2

3 4

5

Quantitative Methods Inquires

277

and identical, the reliability of k out of n− − − system can be written

as (1)
n

j n j
S

j k

n
R r r

j
−

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ , where r is the component reliability.

6. GA based constraint handling technique

In the application of Genetic Algorithm for solving the reliability optimization

problems with interval objective[21-23], there arises an important question for handling the
constraints relating to the problem. During the past, several approaches viz. penalty-based
method, methods that preserve the feasibility of solutions, methods that clearly distinguish
between feasible and unfeasible solutions and hybrid methods have been proposed to
handle the constraints in evolutionary algorithms [16-19] for solving the problems with fixed
objective [24]. Among these approaches, penalty-based technique is very well known and
widely applicable. In this approach, constraints are added /subtracted to the objective
function in different ways. To avoid the infeasible solution, the fitness function is increased
/decreased with a penalty term multiplied by a so called penalty coefficient. However, there
arises a difficulty to select the initial value and updating strategy for the penalty coefficient.
To avoid this situation, Deb [24] proposed a GA based penalty technique called Parameter
Free Penalty (PFP) technique replacing the objective function value of GA by worst objective
value of feasible solution of previous generation and without multiplying the penalty
coefficient. This means that the fitness function values of infeasible solution do not depend
on the objective function value. As the mentioned constrained optimization problem is of
interval valued, therefore the problem to be solved with a new fitness function is of the
following interval form:

Maximize

1 1

ˆ ˆ[(), ()] [(), ()] [max{0, () }, max{0, () }] ()
m m

SL SR SL SR i i i i
i i

R x R x R x R x g x b g x b xθ
= =

= − − − +∑ ∑ (1)

where
[0,0] if

()
[(), ()] min[,] ifSL SR SL SR

x S
x

R x R x R R x S
θ

∈⎧
= ⎨− + ∉⎩

and { : () , 1,2,..., and }i iS x g x b i m l x u= ≤ = ≤ ≤

Here the parameter min[,]SL SRR R is the value of interval valued objective function

of the worst feasible solution in the population. Alternatively, the problem may be solved
with another fitness function by penalizing a large positive number (say M which can be
written in interval form as [,]M M) [25]. We denote this penalty as Big-M penalty and its
form is as follows:

Maximize ˆ ˆ[(), ()] [(), ()] ()SL SR SL SRR x R x R x R x xθ= +

(2)

where
[0,0] if

()
[(), ()] [,] ifSL SR

x S
x

R x R x M M x S
θ

∈⎧
= ⎨− + − − ∉⎩

and { : () , 1,2,..., and }i iS x g x b i m l x u= ≤ = ≤ ≤

The above problems (1) and (2) are non-linear unconstrained integer programming
problem with interval coefficient.

Quantitative Methods Inquires

278

7. Solution procedure

Now we have to solve the above nonlinear maximization problems (1) and (2) with

the help of GA. For this purpose, we have developed two types of GA with different fitness
function based on PFP and Big-M penalty techniques. We call these GAs as PFP-GA and Big-
M-GA respectively.

The different steps of this algorithm are described as follows:

7.1 Algorithm
Step-1: Initialize the parameters of genetic algorithm, bounds of variables and

different parameters of the problem.
Step-2: 0t = [t represents the number of current generation].
Step-3: Initialize the chromosome of the population ()P t [()P t represents the

population at -t th generation].
Step-4: Evaluate the fitness function of each chromosome of ()P t considering the

objective function of either (1) or (2) as fitness function.
Step-5: Find the best chromosome from the population ()P t .
Step-6: t is increased by unity.
Step-7: If the termination criterion is satisfied go to step-14, otherwise, go to next

step.
Step-8: Select the population ()P t from the population (1)P t − of earlier

generation by tournament selection process.
Step-9: Alter the population ()P t by crossover, mutation and elitism process.

Step-10: Evaluate the fitness function value of each chromosome of ()P t .

Step-11: Find the best chromosome from ()P t .

Step-12: Compare the best chromosome of ()P t and (1)P t − and store better one.
Step-13: Go to step-6
Step-14: Print the last found best chromosome (which is the solution of the

optimization problem).
Step-15: End.
For implementing the above GA in solving the problems (1) and (2) the following

basic components are to be considered.
• GA Parameters
• Chromosome representation
• Initialization of population
• Evaluation of fitness function
• Selection process
• Genetic operators (crossover, mutation and elitism)
• Termination criteria

7.2 GA Parameters
There are different parameters used in the genetic algorithm, viz. population size

(p_size), maximum number of generations (m_gen), crossover rate/probability of crossover
(p_cross) and mutation rate/probability of mutation (p_mute). There is no hard and fast rule
for choosing the population size for GA. However, if the population size is considered to be
large, storing of the data in the intermediate steps of GA may create some difficulties at the
time of computation with the help of computer. On the other hand, for very small population
size, some genetic operations can not be implemented. Particularly, mutation operator does
not work properly as the mutation rate is very low. Regarding the maximum number of
generations, there is no indication for considering this value. Generally, it is problem

Quantitative Methods Inquires

279

dependent on problem to problem. Particularly, it depends upon the number of genes
(variables) of a chromosome (solution) in artificial genetics. Again, from the natural genetics,
it is obvious that the crossover rate is always greater than that of mutation rate. Usually, the
crossover rate varies from 0.8 to 0.95 whereas the mutation rate varies from 0.05 to 0.2.
Sometimes, it is considered as 1 nwhere n be the number of genes (variables) of the
chromosomes (solutions).

7.3 Chromosome representation and initialization
In the applications of GA, the appropriate chromosome (individual) representation

of solution for the given problems is an important task to the users. There are different types
of representations, viz. binary, real, octal, hexadecimal coding, available in the existing
literature. Among these representations, real coding representation is very popular as this
type of chromosome representation looks like a vector. In this representation, each
component (gene) of the chromosome is the values of decision variables of the optimization
problems which are to be solved by GA.

7.4 Initialization of population
After the selection of chromosome representation, the next step is to initialize the

chromosomes that will take part in the artificial genetic operations like natural genetics. This
procedure produces population size number of chromosomes in which every component for
each chromosome is randomly generated within the bounds of the corresponding decision
variable. There are different procedures for selecting a random number for each component
of the chromosomes. Here for each component of the chromosome, a random value is
selected from the discrete set of values within its bounds.

7.5 Evaluation of fitness function
After getting a population of potential solutions, we need to check how good they

are. So we have to calculate the fitness value for each chromosome. In this evaluation, the
value of objective function corresponding to the chromosome is taken as the fitness value of
that chromosome. Here, the transformed unconstrained objective function due to different
penalty technique is considered as the fitness function.

7.6 Selection
In artificial genetics, the selection operator plays an important role. Usually, it is the

first operator applied to the population. The primary objective of this operator is to
emphasize on the above average solutions and eliminate below average solutions from the
population for the next generation under the well-known evolutionary principle “survival of
the fittest”. In this work, we have used tournament selection scheme of size two with
replacement as the selection operator. This operator selects the better
chromosome/individual from randomly selected two chromosomes/individuals. This selection
procedure is based on the following assumptions:

(i) When both the chromosomes / individuals are feasible then the one with better
fitness value is selected.

(ii) When one chromosome/individual is feasible and another is infeasible then the
feasible one is selected.

(iii) When both the chromosomes/individuals are infeasible with unequal constraint
violations, then the chromosome with less constraint violation is selected.

(iv) When both the chromosomes/individuals are infeasible with equal constraint
violations, then any one chromosome/individual is selected.

7.7 Crossover
After the selection process, other genetic operators like crossover and mutation are

applied to the resulting chromosomes (those which have survived). Crossover is an operation
that really empowers the GA. It operates on two or more parent solutions at a time and

Quantitative Methods Inquires

280

generates offspring by recombining the feature of the parent solutions. In this operation,

expected []p_cross*p_size (* denotes the product and [] denotes the integral value)

number of chromosomes will take part. Hence in order to perform the crossover operation,

select []p_cross*p_size numbers of chromosomes are selected. In our work, the operation

is done in the following manner.
Step-1: Find the integral value of p_cross*p_size and store it inN .

Step-2: Select the chromosomes kv and iv randomly from the population for

crossover.
Step-3: The components kjv′ and ijv′ (1,2,...,)j n= of two offspring will be created

by either kj kjv v g′ = − and ij ijv v g′ = + if kj ijv v>

Or, kj kjv v g′ = + and ij ijv v g′ = − , where g is a random integer number between

0 and kj ijv v− .

Step-4: Repeat step-2 and step-3 for
2

N
times.

7.8 Mutation
The aim of mutation operation is to introduce the random variations into the

population. Sometimes, it helps to regain the information lost in earlier generations. Mainly,
this operator is responsible for fine tuning capabilities of the system. This operator is applied
to a single chromosome only. Usually, its rate is very low; otherwise it would defeat the
order building generated through selection and crossover operations. Mutation attempts to
bump the population gently into a slightly better way, i.e., the mutation changes single or all
the genes of a randomly selected chromosome slightly. In this work, we have used uniform
mutation. If the gene ikv of chromosome iv is selected for mutation and domain of

ikv is[,]ik ikl u , then the reduced value of ikv is given by

(), if random digit is 0.

(), if random digit is1.

ik ik ik
ik

ik ik ik

v u v
v

v v l

+ Δ −
′ =

− Δ −

⎧
⎨
⎩

where {1,2,..., }k n∈ and ()yΔ returns a value in the range[0,]y .
In our work, we have taken

()yΔ = A random integer between[0,]y .

7.9 Elitism
Sometimes, in any generation, there is a chance that the best chromosome may be

lost when a new population is created by crossover and mutation operations. To remove this
situation the worst individual/chromosome is replaced by that best individual/chromosome
in the current generation. Instead of single chromosome one or more chromosomes may
take part in this operation. This process is called as elitism.

7.10 Termination criteria
The termination condition is to stop the algorithm when either of the following

three conditions is satisfied:
(i) the best individual does not improve over specified generations.
(ii) the total improvement of the last certain number of best solutions is less than a

pre-assigned small positive number or
(iii) The number of generations reaches maximum number of generation i.e.,

max_gen.

Quantitative Methods Inquires

281

In this work we have used first condition and we take 10 generations as a specified
generation.

8. Numerical Examples

To illustrate the proposed GAs (viz. PFP-GA and Big-M-GA) for solving constrained

redundancy allocation problems with interval valued reliabilities of components, we have
solved four numerical examples. It is to be noted that for solving the said problem with fixed
valued reliabilities of components, the reliability of each component are taken as interval
with the same lower and upper bounds of interval. In first three examples, the reliabilities of
the components are interval valued whereas in the last example (taken from Ha and Kuo
[12]), it is fixed. For each example, 20 independent runs have been performed by both the
GAs, of which the following measurements have been collected to compare the performance
of PFP-GA and Big-M-GA.

(i) Best found system reliability
(ii) Average generations
(iii) Average CPU times
The proposed Genetic Algorithms are coded in C programming language and run

in Linux environment. The computation work has been done on the PC which has Intel core-
2 duo processor with 2 GHz. In this computation, different population size has been taken
for different problems. However, the crossover and mutation rates are taken as 0.95 and
0.15 respectively.

Example-8.1 (Ref. section 5.2)

Maximize
5

1

[,] [{1 (1) },{1 (1) }]j jx x
SL SR jL jR

j

R R r r
=

= − − − −∏

subject to
5

2

1

5

1

5

1

0,

[exp() 0,
4

exp() 0,
4

j j
j

j
j j

j

j
j j

j

p x P

x
c x C

x
w x W

=

=

=

− ≤

+ − ≤

− ≤

∑

∑

∑

Table 1: Parameter used in Example -8.1

j rj pj P cj C wj W

1 [0.76,0.83] 1 7 7
2 [0.82,0.87] 2 110 7 175 8 200
3 [0.88,0.93] 3 5 8
4 [0.61,0.67] 4 9 6
5 [0.70,0.80] 2 4 9

Example-8.2 (Ref. section 5.3)

3 3 1 1 2 2 4 4 5 5 6 6

7 7 8 8 9 9 10 10

Maximize[,] {1 1 (1 [,](1 [,][,]))[,] (1 [,][,])}
(1 [,][,][,])[,]

SL SR L R L R L R L R L R L R

L R L R L R L R

R R Q Q R R R R R R R R R R
Q Q Q Q Q Q R R

= − 〈 − − − 〉 −
−

subject to

Quantitative Methods Inquires

282

2 33 5 101
1 2 2 3 4 4 5 5 6 7 6 8 7 9

2 33 4 6 9 10
1 1 2 2 3 5 4 7 8 5 9 6 2

exp() exp() [exp()] exp() 120 0,
2 2 4 2

exp() exp() [exp()] exp() 130 0,
2 4 2 4

x x xxc x c c x c x c x x c x c x

x x x x xw x x w w x w x x w x w x

+ + + + + + + − ≤

+ + + + + + − ≤

Table 2: Parameter used in Example-8.2

j 1 2 3 4 5 6 7 8 9 10

jr
[.80,.84] [.87,.90] [.89,.93] [.84,.86] [.88,.90] [.9,.95] [.8,.85] [.91,.95] [.8,.83] [.88,.92]

jc
8 4 2 2 1 6 2 8 - -

jw
16 6 7 12 7 1 9 - - -

jl
1 1 1 1 1 1 1 1 1 1

ju
4 5 6 7 5 5 3 3 4 6

Example-8.3 (Ref. section 5.4)

5 5 1 1 3 3 2 2 4 4

5 5 1 1 2 2 3 3 4 4

Maximize[,] [,](1 [,][,])(1 [,][,])
[,]{1 (1 [,][,])(1 [,][,])}

SL SR L R L R L R L R L R

L R L R L R L R L R

R R R R Q Q Q Q Q Q Q Q
Q Q R R R R R R R R

= − −
+ − − −

subject to

21
2 3 4 5

3 2 51 4
2 3 4

2 2 33
2 2 3 1 4 5

1 2 3 4 5

10exp() 20 3 8 200 0,
2

10exp() 4exp() 2 6[exp()] 7exp() 310 0,
2 4 4

12[exp()] 5 exp() 3 2 520 0,
4

(1,1,1,1,1) (, , , ,) (6,3,5,6,6),

x x x x x

xx xx x x

xx x x x x x

x x x x x

+ + + − ≤

+ + + + + − ≤

+ + + + − ≤

≤ ≤

where

1 1() {[0.78,0.82],[0.83,0.88],[0.89,0.91],[0.915,0.935],[0.94,0.96],[0.965,0.985]};

R x =

2

2 2() 1 (1 [0.73,0.77]) ;

xR x = − −

3
3

1
3 1

3 3
2

1
() ([0.87,0.89]) ([0.11,0.13]) ;

x
x kk

k

x
R x

k

+
+ −

=

+⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑

4
4 4() 1 (1 [0.68,0.72]) ;

xR x = − −

5
5 5() 1 (1 [0.83,0.86]) ;

xR x = − −

Quantitative Methods Inquires

283

Example-8.4 (Ref. section 5.4)

5 5 1 1 3 3 2 2 4 4

5 5 1 1 2 2 3 3 4 4

Maximize[,] [,](1 [,][,])(1 [,][,])
[,]{1 (1 [,][,])(1 [,][,])}

SL SR L R L R L R L R L R

L R L R L R L R L R

R R R R Q Q Q Q Q Q Q Q
Q Q R R R R R R R R

= − −
+ − − −

subject to

21
2 3 4 5

3 2 51 4
2 3 4

2 2 33
2 2 3 1 4 5

1 2 3 4 5

10exp() 20 3 8 200 0,
2

10exp() 4exp() 2 6[exp()] 7 exp() 310 0,
2 4 4

12[exp()] 5 exp() 3 2 520 0,
4

(1,1,1,1,1) (, , , ,) (6,3,5,6,6), x n

x x x x x

xx xx x x

xx x x x x x

x x x x x +

+ + + − ≤

+ + + + + − ≤

+ + + + − ≤

≤ ≤ ∈�

where

1 1() {[.8,.8],[.85,.85],[.9,.9],[.925,.925],[.95,.95],[.975,.975]};R x =
2

2 2() 1 (1 [0.75,0.75]) ;xR x = − −

3
3

1
3 1

3 3
2

1
() ([0.88,0.88]) ([0.12,0.12]) ;

x
x kk

k

x
R x

k

+
+ −

=

+⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑

4
4 4() 1 (1 [0.7,0.7]) ;xR x = − −

5
5 5() 1 (1 [0.85,0.85]) ;

xR x = − −

Table 3: Numerical results for Example 8.1-8.4

M
e
th

o
d

Example X

Best found system

reliability sR
Average CPU

time (sec.)
Average

Generation
Population

Size

8.1

(3,2,2,3,3)

[0.860808,0.930985]

0.0001

12.10

50

8.2
(1,2,2,5,4,4,2,2,1,5

)
[0.999909,0.999987] 0.0105 17.55 100

8.3 (5,1,2,4,4) [0.991225,0.999872] 0.0200 11.20 200 P
FP

-G
A

8.4 (3,2,4,4,2) [0.999382,0.999382] 0.0100 12.40 100

8.1

(3,2,2,3,3)

[0.860808,0.930985]

0.0001

12.80

50

8.2
(1,2,2,5,4,4,2,2,1,5

)
[0.999909,0.999987] 0.0110 17.75 100

8.3 (5,1,2,4,4) [0.991225,0.999872] 0.0200 10.90 200 B
ig

-M
-G

A

8.4 (3,2,4,4,2) [0.999382,0.999382] 0.0100 12.55 100

9. Sensitivity Analysis

To study the performance of our proposed GAs like PFP-GA and Big-M-GA based

on two different types of penalty techniques, sensitivity analyses have been carried out
graphically on the centre of the interval valued system reliability with respect to GA
parameters like, population size, crossover and mutation rate separately keeping the other
parameters at their original values. These are shown in Fig.5-Fig.7.

Quantitative Methods Inquires

284

From Fig.5, it is evident that in case of PFP-GA, smaller population size gives the
better system reliability. However, both the GAs are stable when population size exceeds the
number 30.

From Fig.6, it is observed that the system reliability is stable if we consider the
crossover rate between the interval (0.65, 0.95) in case of PFP-GA. In both GAs, it is stable
when crossover rate is greater than 0.8.

In Fig.7, sensitivity analyses have been done with respect to mutation rate. In both
GAs, the value of system reliability be the same.

0.6

0.68

0.76

0.84

0.92

0 20 40 60

Population size

C
en

tr
e

of
 th

e
in

te
rv

al
 v

al
ue

d
ob

je
ct

iv
e

fu
nc

tio
n

Big-M-GA
PFP-GA

Figure 5. Population size vs. centre of the objective function value

0.884

0.888

0.892

0.896

0.9

0.6 0.8 1

Crossover rate

C
en

tr
e

of
 th

e
in

te
rv

al
 v

al
ue

d
ob

je
ct

iv
e

fu
nc

tio
n Big-M-GA

PFP-GA

Figure 6. Crossover rate vs. centre of the objective function value

Quantitative Methods Inquires

285

0.5

0.75

1

0 0.05 0.1 0.15 0.2 0.25

Mutation rate

C
en

tr
e

of
 th

e
in

te
rv

al
 v

al
ue

d
ob

je
ct

iv
e

fu
nc

tio
n

Big-M-GA

PFP-GA

Figure 7. Mutation rate vs. centre of the objective function value

10. Conclusions

In this paper, reliability redundancy allocation problems of series-parallel/parallel-

series/complex system with some resource constraints have been solved. In those systems,
reliability of each component has been considered as imprecise number and this imprecise
number has been represented by an interval number which is more appropriate
representation among other representations like, random variable representation with
known probability distribution, fuzzy set with known fuzzy membership function or fuzzy
number. For handling of resource constraints, the corresponding problem has been
converted into unconstrained optimization problem with the help of two different parameter
free penalty techniques. Therefore, the transformed problem is of unconstrained interval
valued optimization problem with integer variables. To solve the transformed problem, we
have developed real coded GA for integer variables with interval valued fitness function,
tournament selection, uniform crossover, uniform mutation and elitism of size one. In
tournament selection and elitism operation, recently developed definitions of interval
ranking have been used. In the existing penalty function technique, tuning of penalty
parameter is a formidable task. From the performance of GAs, it is observed that both the
GAs with both fitness function due to different penalty techniques take very lesser CPU time
with very small generations to solve the problems. It is clear from the expression of the
system reliability, that the system reliability is a monotonically increasing function with
respect to the individual reliabilities of the components. Therefore, there is one optimum
setup irrespective of the choice of the upper bound or lower bound of the component
reliabilities. As a result, the optimum setup obtained from the upper bound/lower bound will
provide both the upper bound and the lower bound of the optimum system reliability.
However, the interval approach presented in this paper has a wider applicability. For future
research, one may use the proposed GAs in solving other reliability optimization problems
like Chance- constrained reliability optimization problems, Network reliability optimization
problems, etc.

References

1. Kuo, W., Prasad, V. R., Tillman, F. A. and Hwuang, C. L. Optimal Reliability Design

Fundamentals and application, Cambridge University Press, 2001
2. Ghare, P. M. and Taylor, R. E. Optimal redundancy for reliability in series system,

Operations Research 17, 1969, pp. 838-847

Quantitative Methods Inquires

286

3. Tillman, F. A., Hwuang, C. L. and Kuo, W. Optimization technique for system
reliability with redundancy: A Review. IEEE Trans. Reliability 26, 1977,
pp.148-155

4. Nakagawa, Y., Nakashima, K. and Hattori, Y. Optimal reliability allocation by
branch-and -bounded technique. IEEE Trans. Reliability, 27, 1978, pp.31-
38

5. Tzafestas, S. G. Optimization of system reliability: A survey of problems and
techniques, International Journal of System Science, 11, 1980, pp.455-486

6. Shantikumar, J. G. and Yao, D. D. On server allocation in multiple centre
manufacturing systems, Operations Research 36, 1988, pp. 333-341

7. Misra, K.B. and Sharama, U. An efficient algorithm to solve integer-programming
problems arising in system reliability design. IEEE Trans. Reliability 40,
1991, pp. 81-91

8. Sundarajan C. Guide to Reliability Engineering: Data, Analysis, Applications,
Implementation, and Management, New York: Van Nostrand Reinhold,
1991

9. Chern, M.S. On the computational complexity of reliability redundancy allocation
in a series system, Operations Research Letter 11, 1992, pp. 309-315

10. Ohtagaki, H., Nakagawa, Y., Iwasaki, A. and Narihisa, H. Smart greedy procedure
for solving a nonlinear knapsacclass of reliability optimization
problems, Mathl. Comput. Modeling 22, 1995, pp.261-272

11. Sun Xiaoling and Li Duan. Optimal Condition and Branch and Bound Algorithm for
Constrained Redundancy Optimization in Series System, Optimization
and Engineering, 3, 2002, pp. 53-65

12. Ha, C. and Kuo, W. Reliability redundancy allocation: An improved realization for
nonconvex nonlinear programming problems, European Journal of
Operational Research, 171, 2006, pp. 124-138

13. Gen, M. and Yun, Y. Soft computing approach for reliability optimization,
Reliability Engineering & System Safety, 91, 2006, pp.1008-1026

14. Kuo, W., Prasad, V. R., Tillman, F. A. and Hwuang, C. L. Optimal Reliability Design
Fundamentals and application, Cambridge University Press, 2001

15. Mahato, S. K. and Bhunia, A. K. Interval-Arithmetic-Oriented Interval Computing
Technique for Global Optimization, Applied Mathematics Research
eXpress, 2006, pp.1-19

16. Goldberg, D. E. Genetic Algorithms: Search, Optimization and Machine Learning,
Reading, MA. Addison Wesley, 1989

17. Michalawich, Z. Genetic Algorithms + Data structure = Evaluation Programs,
Berlin: Springer Verlag, 1996

18. Gen, M. and Cheng, R. Genetic algorithms and engineering optimization, John
Wiley & Sons inc., 2000

19. Sakawa, M. Genetic Algorithms and fuzzy multiobjective optimization, Kiuwer
Academic Publishers, 2002

20. Hansen, E. and Walster G. W. Global optimization using interval analysis, New
York: Marcel Dekker Inc., 2004

21. Ishibuchi, H. and Tanaka, H. Multiobjective programming in optimization of the
interval objective function, European Journal of Operational Research 48,
1990, pp.219-225

22. Chanas, S. and Kuchta, D. Multiobjective programming in the optimization of
interval objective functions-A generalized approach, European journal
of Operational Research, 94, 1996, pp.594-598

23. Sengupta, A. and Pal, T. K. Theory and methodology on comparing interval
numbers, European Journal of Operational Research,127, 2007, pp.28-43

24. Deb, K. An efficient constraint handling method for genetic algorithms, Computer
Methods in Applied Mechanics and Engineering, 186, 2000, pp.311-338

25. Gupta, R. K., Bhunia, A. K. and Roy, D. A GA based penalty function technique for
solving constrained redundancy allocation problem of series system

Quantitative Methods Inquires

287

with interval valued reliability of components, Journal of Computational
and Applied Mathematics232, 2009, pp. 275-284

1 Acknowledgements
The second author would like to acknowledge the support of Defence Research Development Organization (DRDO),
India, for conducting this work.

