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Abstract: The goal of this paper is to solve the constrained redundancy allocation problem of 
series-parallel/parallel-series/complex system with the interval valued reliability of each 
component. For maximizing the overall system reliability under limited resource constraints, 
the problem is formulated as an unconstrained integer programming problem with interval 
coefficients by two different penalty techniques. To solve the transformed problem, we have 
developed two different real coded GAs for integer variables with tournament selection, 
uniform crossover, uniform mutation and different fitness functions based on penalty 
techniques. As a special case, considering the lower and upper bounds of the initial valued 
reliabilities of the component as the same, the corresponding problem has been solved. To 
illustrate the model, some numerical examples have been solved by our developed GAs and 
the results have been compared. Finally, to study the stability of our developed GAs with 
respect to the different GA parameters (like, population size, crossover and mutation rates), 
sensitivity analyses have been shown graphically.   

Key words: Redundancy allocation; Complex system; Reliability optimization; Genetic 
algorithm; Interval numbers; Order relations; Penalty technique 

 
 

1. Introduction 
 
While advanced technologies have raised the world to an unprecedented level of 

productivity, our modern society has become more delicate and vulnerable due to the 
increasing dependence on modern technological system that often require complicated 
operations and highly sophisticated management. From any respect, the system reliability is 
a crucial measure to be considered in system operation and risk management. When 
designing a highly reliable system, there arises an important question how to obtain a 
balance between the reliability and other resources e.g., cost, volume and weight. As a 
result, addition of redundant components or increase of component reliability leads to the 
increase of the system reliability. In the last few decades, optimization problems including 
redundancy allocation have been treated by many researchers as integer nonlinear 
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programming problems with one or several resource constraints [1]. During the last two 
decades, numerous reliability design techniques have been introduced. These techniques can 
be classified as implicit enumeration, dynamic programming, branch and bound technique, 
linear programming, Lagrangian multiplier method, heuristic methods and so on. To solve 
this type of problem, one may refer to the works of Ghare and Taylor[2], Tillman et al.[3], 
Nakagawa et al.[4], Tzafestas [5], Shantikumar and Yao[6], Misra and Sharama[7], 
Sundarajan[8], Chern[9],Ohtagaki et al. [10] ,Sun and Li[11], Ha and Kuo[12], Gen and 
Yun[13].Tillman and Kuo et al.[14] have extensively  reviewed the several optimization 
techniques for system reliability design in their books. In those works, the reliabilities of the 
system components are assumed to be known at a fixed positive level which lies in the open 
interval (0,1) . However, in real life situations, the reliabilities of these individual components 
may vary due to different reasons. Any technology cannot produce different components 
with exactly identical reliabilities. Moreover, the human factor, improper storage facilities 
and other environmental factors may affect the reliabilities of the individual components. 
Therefore it is sensible to treat the component reliabilities as positive imprecise numbers in 
open interval (0,1) , instead of fixed real numbers. To tackle the problem with imprecise 
numbers, generally stochastic, fuzzy and fuzzy-stochastic approaches are used. In stochastic 
approach, the parameters are assumed as random variables with known probability 
distribution. In fuzzy approach, the parameters, constraints and goals are considered as 
fuzzy sets with known membership functions or fuzzy numbers. On the other hand, in fuzzy-
stochastic approach, some parameters are viewed as fuzzy sets and other as random 
variables. However, for a decision maker to specify the appropriate membership function for 
fuzzy approach and probability distribution for stochastic approach and both for fuzzy-
stochastic approach is a formidable task. To overcome these difficulties for representation of 
imprecise numbers by different approaches, one may represent the same by interval number 
as it is the best representation among others. Due to this new representation, the objective 
function of the reduced redundancy allocation problem is interval valued, which is to be 
maximized under given constraints.  

In this study, we have considered GA-based approaches for solving reliability 
optimization problems with interval objective. As objective function of the redundancy 
allocation problem is interval valued, to solve this type of problem by GA method, order 
relations of interval numbers are essential for selection/ reproduction operation as well as 
for finding the best chromosome in each generation. Recently, Mahato and Bhunia[15] 
proposed the modified definitions of order relations with respect to optimistic and pessimistic 
decision maker’s point of view for maximization and minimization problems. 

In this paper, we have considered the problem of constrained redundancy 
allocation in series system, hierarchical series-parallel system and complex or non-parallel-
series system with interval valued reliability components. The problem is formulated as a 
non-linear constrained integer programming problem with interval coefficients for 
maximizing the overall system reliability under resource constraints. During the last few 
years, several techniques were proposed for solving constraints optimization problem with 
fixed coefficient with the help of GAs[ 16-19]. Among them, penalty function techniques are 
very popular in solving the same by GAs [13, 16, 19]. This method transforms the 
constrained optimization problem to an unconstrained optimization problem by penalizing 
the objective function corresponding to the infeasible solution. In this work, to solve the 
constrained optimization problem we have converted it into unconstrained one by two 
different type of penalty techniques and the resulting objective function would be interval 
valued. So, to solve this problem we have developed two different GAs for integer variables 
with same GA operators like tournament selection, uniform crossover, uniform mutation and 
elitism of size one but different fitness function depending on different penalty approaches. 
These methods have been illustrated with some numerical examples and to test the 
performance of these methods, results have also been compared. As a special case 
considering the lower and upper bounds of interval valued reliabilities of components as 
same, the resulting problem becomes identical with the existing problem available in the 
literature. This type of redundancy allocation problem with fixed valued of reliabilities of 
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components have been solved and illustrated with some existing numerical examples. 
Finally, to study the stability of our developed GAs for interval valued objective with respect 
to different GA parameters, sensitivity analyses have been performed and shown graphically.  

 
2. Finite interval arithmetic 

 
An interval number A is a closed interval defined 

by [ , ] { : , }L R L RA a a x a x a x R= = ≤ ≤ ∈ , where La  and Ra are the left and right limits, 

respectively and R is the set of all real numbers. An interval A  can also be expressed in 
terms of centre and radius as , { : , }C W C W C WA a a x a a x a a x R= 〈 〉 = − ≤ ≤ + ∈ , where Ca  

and Wa  are, respectively, the centre and radius of the interval A i.e., 

( ) 2C L Ra a a= + and ( ) 2W R La a a= − . Actually, each real number can be regarded as an 

interval, such as for all x R∈ , x can be written as an interval [ , ]x x  which has zero radius. 
The basic arithmetical operations like, addition, subtraction, multiplication, division and 
integral power of interval number are available in the book of interval analysis [20]. 

 
3. Order relations of interval numbers 

 
In this paper, as we have considered some parameters as interval valued, to find 

the optimal solution of the optimization problem so we have to discuss the order relations of 
interval numbers for maximization problems.  Let A and B be two closed intervals. These 
two intervals may be one of the following three types. 

Type1.  Two intervals A and B are disjoint. 
Type2. Intervals are partially overlapping. 
Type3. Either A B⊂ or B A⊂  
 In this case, we shall consider the definitions of order relations for maximization 

problems developed recently by Mahato and Bhunia [15] in the context of optimistic and 
pessimistic decision maker’s point of view.  

 
4. Assumptions and Notations 

 
To develop the paper, the following assumptions and notations have been 

considered . 
 
4.1 Assumptions 
1. The component reliabilities are imprecise and interval valued. 
2. The failure of any component is independent of that of the other components. 
3. All redundancy is active redundancy without repair. 
 
4.2 Notations 
The following notations have been used in the entire paper. 
m          Number of resource constraints 
n           Number of stages of the system 
x          1 2( , ,..., )nx x x  

j           Index for stage 

jx         Number of redundant components at stage j  

jl           Lower limit on jx  

ju          Upper limit on jx  

jr          Reliability of component at stage j  which is interval valued 
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jLr          Lower limit of jr  

jRr          Upper limit of jr  

ib           Total amount of i th−  resource available  

( )j iR x   1 (1 ) ix
jr− − , the reliability of stage j  

( )jLR x   Lower bound of ( )jR x  

( )jRR x   Upper bound of ( )jR x  

jQ          1 jR−  

SR =[ , ]SL SRR R          System reliability which is interval valued 

 
5. Problem formulation 

 
Let us consider a system consisting of n  components. Assume that the system and 

its components have two states, viz. “operating state” and “failure state”. To represent the 
state of the component j ( 1,2,3,...,j n= ), let us define a binary variable jy  as follows: 

f the component jis in operating state,1,  i    
0,  otherwise,jy

⎧
= ⎨

⎩
 

In this case, we get a set of 2n numbers of binary vectors with n components each. 
Similarly to represent the state of the system, we define another binary variableφ  given by 

1,   if thesystem is in operatingstate 
0,  otherwise

φ
⎧

= ⎨
⎩

 

Clearly the value of φ  is 1 for some possibilities of y and 0 for other possibilities. 

Therefore, in most of the reliability systems, we can explicitly define φ as a function of 

y [say ( )yφ ]. So that the system state φ  corresponding to the vector y is given by ( )yφ φ= . 

The function ( )yφ is called the structure function of the system. 

Now we consider a system with structure function ( )yφ . A component j is said to 

be relevant to function ( )yφ either  

1 1 1( ,..., ,1, ,..., ) 1 , and 1,2,...,j j n ry y y y y r j r nφ − + = ∀ ≠ =    

or,   1 1 1( ,..., ,0, ,..., ) 0 , and 1,2,...,j j n ry y y y y r j r nφ − + = ∀ ≠ =  

 
Definition 5.1 A system is called coherent if and only if the structure 

function ( )yφ satisfies the following conditions: 

(i) ( )yφ is a non-decreasing function for each jy , 

(ii) Each component is relevant to ( )yφ . 
Now, we consider a coherent system consisting of  n  subsystems and 

m constraints, in which each subsystem has a number of redundancies and all components, 
are stochastically independent. The objective of the redundancy allocation problem is to find 
the number of redundancies in each subsystem in order to maximize the overall system 
reliability subject to the given constraints. The corresponding problem formulated as an 
Integer Non-Linear Programming (INLP) is as follows: 

Maximize SR  

 subject to the constraints 
( ) , for 1,2,...,i ig x b i m≤ =  
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j j jl x u≤ ≤ , for 1,2,...,j n=  

Now if we consider the reliability of each component as interval valued, the earlier 
mentioned problem is transformed to the non-linear constrained integer programming 
problem with interval objective as follows:  

Maximize [ , ]S SRLR R          

subject to the constraints 
( ) , for 1,2,...,i ig x b i m≤ =  

j j jl x u≤ ≤ , for 1,2,...,j n=  

Now, we shall discuss the different types of redundancy allocation problems.   
 
5.2 Constrained redundancy optimization problem for a series system 
It is well known that a series system (ref. Fig.1) with n independent components 

must be operating only if all the components are functioning. In order to improve the overall 
reliability of the system; one can use more reliable components. However, the expenditure 
and more often the technological limits may prohibit an adoption of this strategy. An 
alternative technique is to add redundant components as shown in Fig. 2. The goal of the 
problem is to determine an optimal redundancy allocation so as to maximize the overall 
system reliability under limited resource constraints. These constraints may arise out of the 
size, cost and quantities of the resources. Mathematically, the constrained redundancy 
optimization problem for such a system for fixed values of reliability can be formulated as 
follows: 

 
IN                                                                                                                                            
OUT 
   
                                           

 
Figure 1 

 
 
 
     
 
 
 
 

 
 
 
 
 
 

Figure 2 
 
 

Maximize 
1

[1 (1 ) ]j
n

x
S j

j

R r
=

= − −∏  

subject to ( ) , 1,2,...,i ig x b i m≤ =  

and j j jl x u≤ ≤ , for 1,2,...,j n=  

where (0,1)jr ∈  

1 2 3 n

1
2 n1 2 n

1 2 n
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 Now if we consider component reliabilities as interval valued, i.e., 
[ , ]j jL jRr r r= then the above problem reduces to 

 
 

Maximize 
1

[ , ] [{1 (1 ) },{1 (1 ) }]j j
n

x x
SL SR jL jR

j

R R r r
=

= − − − −∏  

subject to ( ) , 1,2,...,i ig x b i m≤ =  

and j j jl x u≤ ≤ , for 1,2,...,j n=  

This is an INLP with interval valued objective. 
 
 
5. 3.  Hierarchical series-parallel system 
 
A reliability system is called a hierarchical series parallel system (HSP) if the system 

can be viewed as a set of subsystems arranged in a series parallel; each subsystem has a 
similar configuration; subsystems of each subsystem have a similar configuration and so on. 
For example let us consider a HSP system ( 10, 2)n m= =  shown in the Fig. 3. This system 
has a nonlinear and non separable structure and consists of nested parallel and series 
system. The system reliability of HSP is given by 

3 1 2 4 5 6 7 8 9 10{1 1 [1 (1 )] (1 )}(1 )SR Q R R R R R Q Q Q R= − 〈 − − − 〉 − −  

Mathematically, the constrained redundancy optimization problem for this system 
for fixed values of reliability can be formulated as follows: 

Maximize 3 1 2 4 5 6 7 8 9 10{1 1 [1 (1 )] (1 )}(1 )SR Q R R R R R Q Q Q R= − 〈 − − − 〉 − −  

subject to ( ) , 1,2,...,i ig x b i m≤ =  

and j j jl x u≤ ≤ , for 1,2,...,j n=  

where (0,1)jr ∈  

Now if we consider the component reliabilities as interval valued, i.e., 
[ , ]j jL jRr r r= then the above problem reduces to the following form: 

3 3 1 1 2 2 4 4 5 5 6 6

7 7 8 8 9 9 10 10

Maximize[ , ] {1 1 (1 [ , ](1 [ , ][ , ]))[ , ] (1 [ , ][ , ])}
(1 [ , ][ , ][ , ])[ , ]

SL SR L R L R L R L R L R L R

L R L R L R L R

R R Q Q R R R R R R R R R R
Q Q Q Q Q Q R R

= − 〈 − − − 〉 −
−

 
subject to ( ) , 1,2,...,i ig x b i m≤ =  

and j j jl x u≤ ≤ , for 1,2,...,j n=  

This is an INLP with interval valued objective. 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 3 
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5.4 Complex System  
When a reliability system can be reduced to series and parallel configurations, 

there exist combinations of components which are connected neither in a series nor in 
parallel. Such systems are called complex or non parallel series systems. This system is also 
called the bridge system.  

For example, let us consider a bridge system ( 5, 3)n m= =  shown in Fig.4. This 
system consists of five subsystems and three nonlinear and non-separable constraints. The 
overall system reliability SR  is given by the expression as follows: 

5 1 3 2 4 5 1 2 3 4(1 )(1 ) [1 (1 )(1 )]SR R QQ Q Q Q R R R R= − − + − − − ,  

where ( )j j jR R x= and 1j jQ R= −  for all 1,...,5j = . 

Mathematically, the constrained redundancy optimization problem for such 
complex system for fixed values of reliability can be formulated as follows: 

Maximize 5 1 3 2 4 5 1 2 3 4(1 )(1 ) [1 (1 )(1 )]SR R QQ Q Q Q R R R R= − − + − − −  

subject to ( ) , 1,2,...,i ig x b i m≤ =  

and j j jl x u≤ ≤ , for 1,2,...,j n=  

where (0,1)jr ∈  

Since the overall system has a complex structure, the objective function is also non-
linear and non-separable. 

Now if we consider the component reliabilities as interval valued, i.e., 
[ , ]j jL jRr r r= then the above problem reduces to the following form as follows: 

5 5 1 1 3 3 2 2 4 4

5 5 1 1 2 2 3 3 4 4

Maximize[ , ] [ , ](1 [ , ][ , ])(1 [ , ][ , ])
[ , ]{1 (1 [ , ][ , ])(1 [ , ][ , ])}

SL SR L R L R L R L R L R

L R L R L R L R L R

R R R R Q Q Q Q Q Q Q Q
Q Q R R R R R R R R

= − −
+ − − −

 
subject to ( ) , 1,2,...,i ig x b i m≤ =  

and j j jl x u≤ ≤ , for 1,2,...,j n=  

This is an INLP with interval valued objective. 
       
         
 
 
 

 
 
 
 

Figure 4 
 
 
5.5 -out-of-  k n System 
A k out of n− − −  system is an n -component system which functions when at 

least k of its n components function. This redundant system is sometimes used in the place 
of pure parallel system. It is also referred to as :k out of n G− − −  system. An n -

component series system is a :n out of n G− − − system whereas a parallel system with n -

components is a 1 :out of n G− − − system. When all of the components are independent 

1 2 

3 4 
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and identical, the reliability of k out of n− − − system can be written 

as (1 )
n

j n j
S

j k

n
R r r

j
−

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ , where r is the component reliability.    

 
 

6. GA based constraint handling technique 
 
In the application of Genetic Algorithm for solving the reliability optimization 

problems with interval objective[ 21-23], there arises an important question for handling the 
constraints relating to the problem. During the past, several approaches viz. penalty-based 
method, methods that preserve the feasibility of solutions, methods that clearly distinguish 
between feasible and unfeasible solutions and hybrid methods have been proposed to 
handle the constraints in evolutionary algorithms [16-19] for solving the problems with fixed 
objective [24].  Among these approaches, penalty-based technique is very well known and 
widely applicable. In this approach, constraints are added /subtracted to the objective 
function in different ways. To avoid the infeasible solution, the fitness function is increased 
/decreased with a penalty term multiplied by a so called penalty coefficient. However, there 
arises a difficulty to select the initial value and updating strategy for the penalty coefficient. 
To avoid this situation, Deb [24] proposed a GA based penalty technique called Parameter 
Free Penalty (PFP) technique replacing the objective function value of GA by worst objective 
value of feasible solution of previous generation and without multiplying the penalty 
coefficient. This means that the fitness function values of infeasible solution do not depend 
on the objective function value. As the mentioned constrained optimization problem is of 
interval valued, therefore the problem to be solved with a new fitness function is of the 
following interval form: 

Maximize

1 1

ˆ ˆ[ ( ), ( )] [ ( ), ( )] [ max{0, ( ) }, max{0, ( ) }] ( )
m m

SL SR SL SR i i i i
i i

R x R x R x R x g x b g x b xθ
= =

= − − − +∑ ∑  (1)                             

where 
[0,0] if

( )
[ ( ), ( )] min[ , ] ifSL SR SL SR

x S
x

R x R x R R x S
θ

∈⎧
= ⎨− + ∉⎩

 

and { : ( ) , 1,2,..., and }i iS x g x b i m l x u= ≤ = ≤ ≤  

Here the parameter min[ , ]SL SRR R is the value of interval valued objective function 

of the worst feasible solution in the population. Alternatively, the problem may be solved 
with another fitness function by penalizing a large positive number (say M which can be 
written in interval form as [ , ]M M ) [25]. We denote this penalty as Big-M penalty and its 
form is as follows: 

Maximize ˆ ˆ[ ( ), ( )] [ ( ), ( )] ( )SL SR SL SRR x R x R x R x xθ= +                                                                              

(2) 

where 
[0,0] if

( )
[ ( ), ( )] [ , ] ifSL SR

x S
x

R x R x M M x S
θ

∈⎧
= ⎨− + − − ∉⎩

 

and { : ( ) , 1,2,..., and }i iS x g x b i m l x u= ≤ = ≤ ≤  

The above problems (1) and (2) are non-linear unconstrained integer programming 
problem with interval coefficient.  
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7. Solution procedure 
 
Now we have to solve the above nonlinear maximization problems (1) and (2) with 

the help of GA. For this purpose, we have developed two types of GA with different fitness 
function based on PFP and Big-M penalty techniques. We call these GAs as PFP-GA and Big-
M-GA respectively. 

The different steps of this algorithm are described as follows: 
 
 
 
7.1 Algorithm 
Step-1: Initialize the parameters of genetic algorithm, bounds of variables and 

different parameters of the problem. 
Step-2: 0t = [ t  represents the number of current generation]. 
Step-3: Initialize the chromosome of the population ( )P t [ ( )P t represents the 

population at -t th generation]. 
Step-4: Evaluate the fitness function of each chromosome of ( )P t considering the 

objective function of either (1) or (2) as fitness function. 
Step-5: Find the best chromosome from the population ( )P t . 
Step-6: t  is increased by unity. 
Step-7: If the termination criterion is satisfied go to step-14, otherwise, go to next 

step. 
Step-8: Select the population ( )P t from the population ( 1)P t − of earlier 

generation by tournament selection process. 
Step-9: Alter the population ( )P t by crossover, mutation and elitism process. 

Step-10: Evaluate the fitness function value of each chromosome of ( )P t . 

Step-11: Find the best chromosome from ( )P t . 

Step-12: Compare the best chromosome of ( )P t and ( 1)P t − and store better one. 
Step-13: Go to step-6 
Step-14: Print the last found best chromosome (which is the solution of the 

optimization problem). 
Step-15: End. 
For implementing the above GA in solving the problems (1) and (2) the following 

basic components are to be considered. 
• GA Parameters 
• Chromosome representation 
• Initialization of population 
• Evaluation of fitness function 
• Selection process 
• Genetic operators (crossover, mutation and elitism) 
• Termination criteria 
 
7.2 GA Parameters 
There are different parameters used in the genetic algorithm, viz. population size 

(p_size), maximum number of generations (m_gen), crossover rate/probability of crossover 
(p_cross) and mutation rate/probability of mutation (p_mute). There is no hard and fast rule 
for choosing the population size for GA. However, if the population size is considered to be 
large, storing of the data in the intermediate steps of GA may create some difficulties at the 
time of computation with the help of computer. On the other hand, for very small population 
size, some genetic operations can not be implemented. Particularly, mutation operator does 
not work properly as the mutation rate is very low. Regarding the maximum number of 
generations, there is no indication for considering this value. Generally, it is problem 
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dependent on problem to problem. Particularly, it depends upon the number of genes 
(variables) of a chromosome (solution) in artificial genetics. Again, from the natural genetics, 
it is obvious that the crossover rate is always greater than that of mutation rate. Usually, the 
crossover rate varies from 0.8 to 0.95 whereas the mutation rate varies from 0.05 to 0.2. 
Sometimes, it is considered as 1 nwhere n be the number of genes (variables) of the 
chromosomes (solutions).   

 
 
7.3 Chromosome representation and initialization 
In the applications of GA, the appropriate chromosome (individual) representation 

of solution for the given problems is an important task to the users. There are different types 
of representations, viz. binary, real, octal, hexadecimal coding, available in the existing 
literature. Among these representations, real coding representation is very popular as this 
type of chromosome representation looks like a vector. In this representation, each 
component (gene) of the chromosome is the values of decision variables of the optimization 
problems which are to be solved by GA. 

 
7.4 Initialization of population 
After the selection of chromosome representation, the next step is to initialize the 

chromosomes that will take part in the artificial genetic operations like natural genetics. This 
procedure produces population size number of chromosomes in which every component for 
each chromosome is randomly generated within the bounds of the corresponding decision 
variable. There are different procedures for selecting a random number for each component 
of the chromosomes. Here for each component of the chromosome, a random value is 
selected from the discrete set of values within its bounds. 

 
7.5 Evaluation of fitness function 
After getting a population of potential solutions, we need to check how good they 

are. So we have to calculate the fitness value for each chromosome. In this evaluation, the 
value of objective function corresponding to the chromosome is taken as the fitness value of 
that chromosome. Here, the transformed unconstrained objective function due to different 
penalty technique is considered as the fitness function. 

 
7.6 Selection 
In artificial genetics, the selection operator plays an important role. Usually, it is the 

first operator applied to the population. The primary objective of this operator is to 
emphasize on the above average solutions and eliminate below average solutions from the 
population for the next generation under the well-known evolutionary principle “survival of 
the fittest”. In this work, we have used tournament selection scheme of size two with 
replacement as the selection operator. This operator selects the better 
chromosome/individual from randomly selected two chromosomes/individuals. This selection 
procedure is based on the following assumptions: 

(i) When both the chromosomes / individuals are feasible then the one with better 
fitness value is selected. 

(ii) When one chromosome/individual is feasible and another is infeasible then the 
feasible one is selected. 

(iii) When both the chromosomes/individuals are infeasible with unequal constraint 
violations, then the chromosome with less constraint violation is selected. 

(iv) When both the chromosomes/individuals are infeasible with equal constraint 
violations, then any one chromosome/individual is selected. 

 
7.7 Crossover 
After the selection process, other genetic operators like crossover and mutation are 

applied to the resulting chromosomes (those which have survived). Crossover is an operation 
that really empowers the GA. It operates on two or more parent solutions at a time and 
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generates offspring by recombining the feature of the parent solutions. In this operation, 

expected [ ]p_cross*p_size  (* denotes the product and [ ] denotes the integral value) 

number of chromosomes will take part. Hence in order to perform the crossover operation, 

select [ ]p_cross*p_size numbers of chromosomes are selected. In our work, the operation 

is done in the following manner.  
Step-1: Find the integral value of p_cross*p_size  and store it inN . 

Step-2: Select the chromosomes kv and iv randomly from the population for 

crossover. 
Step-3: The components kjv′ and ijv′ ( 1,2,..., )j n=  of two offspring will be created 

by either kj kjv v g′ = − and ij ijv v g′ = +  if kj ijv v>  

Or, kj kjv v g′ = + and ij ijv v g′ = − , where g is a random integer number between 

0 and kj ijv v− . 

Step-4: Repeat step-2 and step-3 for 
2

N
times. 

7.8 Mutation 
The aim of mutation operation is to introduce the random variations into the 

population. Sometimes, it helps to regain the information lost in earlier generations. Mainly, 
this operator is responsible for fine tuning capabilities of the system. This operator is applied 
to a single chromosome only. Usually, its rate is very low; otherwise it would defeat the 
order building generated through selection and crossover operations. Mutation attempts to 
bump the population gently into a slightly better way, i.e., the mutation changes single or all 
the genes of a randomly selected chromosome slightly. In this work, we have used uniform 
mutation. If the gene ikv of chromosome iv is selected for mutation and domain of 

ikv is[ , ]ik ikl u , then the reduced value of ikv is given by 

( ),  if random digit is 0.

( ),  if random digit is1.

ik ik ik
ik

ik ik ik

v u v
v

v v l

+ Δ −
′ =

− Δ −

⎧
⎨
⎩

 

where {1,2,..., }k n∈ and ( )yΔ returns a value in the range[0, ]y . 
In our work, we have taken  

( )yΔ = A random integer between[0, ]y . 
 
7.9 Elitism 
Sometimes, in any generation, there is a chance that the best chromosome may be 

lost when a new population is created by crossover and mutation operations. To remove this 
situation the worst individual/chromosome is replaced by that best individual/chromosome 
in the current generation. Instead of single chromosome one or more chromosomes may 
take part in this operation. This process is called as elitism. 

 
7.10 Termination criteria 
The termination condition is to stop the algorithm when either of the following 

three conditions is satisfied: 
(i) the best individual does not improve over specified generations. 
(ii) the total improvement of the last certain number of best solutions is less than a  

pre-assigned small positive number or 
(iii) The number of generations reaches maximum number of generation i.e., 

max_gen. 
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In this work we have used first condition and we take 10 generations as a specified 
generation. 

 
8. Numerical Examples  

 
To illustrate the proposed GAs (viz. PFP-GA and Big-M-GA) for solving constrained 

redundancy allocation problems with interval valued reliabilities of components, we have 
solved four numerical examples. It is to be noted that for solving the said problem with fixed 
valued reliabilities of components, the reliability of each component are taken as interval 
with the same lower and upper bounds of interval. In first three examples, the reliabilities of 
the components are interval valued whereas in the last example (taken from Ha and Kuo 
[12]), it is fixed. For each example, 20 independent runs have been performed by both the 
GAs, of which the following measurements have been collected to compare the performance 
of PFP-GA and Big-M-GA. 

(i) Best found system reliability 
(ii) Average generations 
(iii) Average CPU times  
The proposed Genetic Algorithms are coded in C programming language and run 

in Linux environment. The computation work has been done on the PC which has Intel core-
2 duo processor with 2 GHz. In this computation, different population size has been taken 
for different problems.  However, the crossover and mutation rates are taken as 0.95 and 
0.15 respectively. 

 
Example-8.1 (Ref. section 5.2) 

Maximize 
5

1

[ , ] [{1 (1 ) },{1 (1 ) }]j jx x
SL SR jL jR

j

R R r r
=

= − − − −∏  

subject to  
5

2

1

5

1

5

1

0,

[ exp( ) 0,
4

exp( ) 0,
4

j j
j

j
j j

j

j
j j

j

p x P

x
c x C

x
w x W

=

=

=

− ≤

+ − ≤

− ≤

∑

∑

∑

 

 
Table 1: Parameter used in Example -8.1 

j rj pj P cj C wj W 

1 [0.76,0.83] 1  7  7  
2 [0.82,0.87] 2 110 7 175 8 200 
3 [0.88,0.93] 3  5  8  
4 [0.61,0.67] 4  9  6  
5 [0.70,0.80] 2  4  9  

 
Example-8.2 (Ref. section 5.3) 

3 3 1 1 2 2 4 4 5 5 6 6

7 7 8 8 9 9 10 10

Maximize[ , ] {1 1 (1 [ , ](1 [ , ][ , ]))[ , ] (1 [ , ][ , ])}
(1 [ , ][ , ][ , ])[ , ]

SL SR L R L R L R L R L R L R

L R L R L R L R

R R Q Q R R R R R R R R R R
Q Q Q Q Q Q R R

= − 〈 − − − 〉 −
−

 
subject to 
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2 33 5 101
1 2 2 3 4 4 5 5 6 7 6 8 7 9

2 33 4 6 9 10
1 1 2 2 3 5 4 7 8 5 9 6 2

exp( ) exp( ) [ exp( )] exp( ) 120 0,
2 2 4 2

exp( ) exp( ) [ exp( )] exp( ) 130 0,
2 4 2 4

x x xxc x c c x c x c x x c x c x

x x x x xw x x w w x w x x w x w x

+ + + + + + + − ≤

+ + + + + + − ≤

 
 
 
Table 2: Parameter used in Example-8.2 

j  1 2 3 4 5 6 7 8 9 10 

jr  
[.80,.84] [.87,.90] [.89,.93] [.84,.86] [.88,.90] [.9,.95] [.8,.85] [.91,.95] [.8,.83] [.88,.92] 

jc  
8 4 2 2 1 6 2 8 - - 

jw  
16 6 7 12 7 1 9 - - - 

jl  
1 1 1 1 1 1 1 1 1 1 

ju  
4 5 6 7 5 5 3 3 4 6 

 
 
Example-8.3 (Ref. section 5.4) 

5 5 1 1 3 3 2 2 4 4

5 5 1 1 2 2 3 3 4 4

Maximize[ , ] [ , ](1 [ , ][ , ])(1 [ , ][ , ])
[ , ]{1 (1 [ , ][ , ])(1 [ , ][ , ])}

SL SR L R L R L R L R L R

L R L R L R L R L R

R R R R Q Q Q Q Q Q Q Q
Q Q R R R R R R R R

= − −
+ − − −

 
subject to 

21
2 3 4 5

3 2 51 4
2 3 4

2 2 33
2 2 3 1 4 5

1 2 3 4 5

10exp( ) 20 3 8 200 0,
2

10exp( ) 4exp( ) 2 6[ exp( )] 7exp( ) 310 0,
2 4 4

12[ exp( )] 5 exp( ) 3 2 520 0,
4

(1,1,1,1,1) ( , , , , ) (6,3,5,6,6),

x x x x x

xx xx x x

xx x x x x x

x x x x x

+ + + − ≤

+ + + + + − ≤

+ + + + − ≤

≤ ≤

 

where  

1 1( ) {[0.78,0.82],[0.83,0.88],[0.89,0.91],[0.915,0.935],[0.94,0.96],[0.965,0.985]};
 
R x =

 
2

2 2( ) 1 (1 [0.73,0.77]) ;
 

xR x = − −
 

3
3

1
3 1

3 3
2

1
( ) ([0.87,0.89]) ([0.11,0.13]) ;

x
x kk

k

x
R x

k

+
+ −

=

+⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  

4
4 4( ) 1 (1 [0.68,0.72]) ;

 

xR x = − −
 

5
5 5( ) 1 (1 [0.83,0.86]) ;

 

xR x = − −
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Example-8.4 (Ref. section 5.4) 

5 5 1 1 3 3 2 2 4 4

5 5 1 1 2 2 3 3 4 4

Maximize[ , ] [ , ](1 [ , ][ , ])(1 [ , ][ , ])
[ , ]{1 (1 [ , ][ , ])(1 [ , ][ , ])}

SL SR L R L R L R L R L R

L R L R L R L R L R

R R R R Q Q Q Q Q Q Q Q
Q Q R R R R R R R R

= − −
+ − − −

 
subject to 

21
2 3 4 5

3 2 51 4
2 3 4

2 2 33
2 2 3 1 4 5

1 2 3 4 5

10exp( ) 20 3 8 200 0,
2

10exp( ) 4exp( ) 2 6[ exp( )] 7 exp( ) 310 0,
2 4 4

12[ exp( )] 5 exp( ) 3 2 520 0,
4

(1,1,1,1,1) ( , , , , ) (6,3,5,6,6), x n

x x x x x

xx xx x x

xx x x x x x

x x x x x +

+ + + − ≤

+ + + + + − ≤

+ + + + − ≤

≤ ≤ ∈�

  

where 

1 1( ) {[.8,.8],[.85,.85],[.9,.9],[.925,.925],[.95,.95],[.975,.975]};R x =  
2

2 2( ) 1 (1 [0.75,0.75]) ;xR x = − −  

3
3

1
3 1

3 3
2

1
( ) ([0.88,0.88]) ([0.12,0.12]) ;

 

x
x kk

k

x
R x

k

+
+ −

=

+⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑  

4
4 4( ) 1 (1 [0.7,0.7]) ;xR x = − −  

5
5 5( ) 1 (1 [0.85,0.85]) ;

 

xR x = − −
          

 
Table 3: Numerical results for Example 8.1-8.4 

M
e
th

o
d

 

Example X 

Best found system 

reliability sR  
Average CPU 

time (sec.) 
Average 

Generation 
Population 

Size 

 
8.1 

 
(3,2,2,3,3) 

 
[0.860808,0.930985] 

 
0.0001 

 
12.10 

 
50 

8.2 
(1,2,2,5,4,4,2,2,1,5

) 
[0.999909,0.999987] 0.0105 17.55 100 

8.3 (5,1,2,4,4) [0.991225,0.999872] 0.0200 11.20 200 P
FP

-G
A

 

8.4 (3,2,4,4,2) [0.999382,0.999382] 0.0100 12.40 100 
 

8.1 
 

(3,2,2,3,3) 
 

[0.860808,0.930985] 
 

0.0001 
 

12.80 
 

50 

8.2 
(1,2,2,5,4,4,2,2,1,5

) 
[0.999909,0.999987] 0.0110 17.75 100 

8.3 (5,1,2,4,4) [0.991225,0.999872] 0.0200 10.90 200 B
ig

-M
-G

A
 

8.4 (3,2,4,4,2) [0.999382,0.999382] 0.0100 12.55 100 
                        

9. Sensitivity Analysis 
 
To study the performance of our proposed GAs like PFP-GA and Big-M-GA based 

on two different types of penalty techniques, sensitivity analyses have been carried out 
graphically on the centre of the interval valued system reliability with respect to GA 
parameters like, population size, crossover and mutation rate separately keeping the other 
parameters at their original values. These are shown in Fig.5-Fig.7. 
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From Fig.5, it is evident that in case of PFP-GA, smaller population size gives the 
better system reliability. However, both the GAs are stable when population size exceeds the 
number 30.  

From Fig.6, it is observed that the system reliability is stable if we consider the 
crossover rate between the interval (0.65, 0.95) in case of PFP-GA. In both GAs, it is stable 
when crossover rate is greater than 0.8. 

In Fig.7, sensitivity analyses have been done with respect to mutation rate. In both 
GAs, the value of system reliability be the same. 
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Figure 5. Population size vs. centre of the objective function value 
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Figure 6. Crossover rate vs. centre of the objective function value 
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Figure 7. Mutation rate vs. centre of the objective function value  

 
10. Conclusions   

 
In this paper, reliability redundancy allocation problems of series-parallel/parallel-

series/complex system with some resource constraints have been solved. In those systems, 
reliability of each component has been considered as imprecise number and this imprecise 
number has been represented by an interval number which is more appropriate 
representation among other representations like, random variable representation with 
known probability distribution, fuzzy set with known fuzzy membership function or fuzzy 
number. For handling of resource constraints, the corresponding problem has been 
converted into unconstrained optimization problem with the help of two different parameter 
free penalty techniques. Therefore, the transformed problem is of unconstrained interval 
valued optimization problem with integer variables. To solve the transformed problem, we 
have developed real coded GA for integer variables with interval valued fitness function, 
tournament selection, uniform crossover, uniform mutation and elitism of size one. In 
tournament selection and elitism operation, recently developed definitions of interval 
ranking have been used. In the existing penalty function technique, tuning of penalty 
parameter is a formidable task. From the performance of GAs, it is observed that both the 
GAs with both fitness function due to different penalty techniques take very lesser CPU time 
with very small generations to solve the problems. It is clear from the expression of the 
system reliability, that the system reliability is a monotonically increasing function with 
respect to the individual reliabilities of the components. Therefore, there is one optimum 
setup irrespective of the choice of the upper bound or lower bound of the component 
reliabilities. As a result, the optimum setup obtained from the upper bound/lower bound will 
provide both the upper bound and the lower bound of the optimum system reliability. 
However, the interval approach presented in this paper has a wider applicability. For future 
research, one may use the proposed GAs in solving other reliability optimization problems 
like Chance- constrained reliability optimization problems, Network reliability optimization 
problems, etc. 
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