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Abstract: Starting from a generalized form of Burr-Hatke differential equation namely 

d / d ( ) ( )a bx u x v xϕ ϕ ϕ= ⋅ + ⋅ (see for details [18]), we obtain – for peculiar choices of u, v, a and b 

– as a solution, a reliability function ( )xϕ  which provides a homographic failure rate (HFR) 

( ) 1/h x xθ= + , where 0θ > . Some statistical inferences on the variable X having such a hazard 

rate are performed. Main indicators are evaluated and it is proved that the maximum 
likelihood method of estimation cannot furnish a solution for the parameter involved. A 
moment estimator is deduced which is used in the construction of some special sampling plans 
for durability testing. 
 
Key words: Burr-Hatke equation; HFR –homographic failure rate; exponential integral; 
moment estimator; log-likelihood equation; (n, 0) - sampling plan 
 

1. Preliminaries and some historical remarks 
 

In statistical distribution theory, the so-called Burr-Hatke differential equation, 
namely 

( ) ( )d 1 ,
d
F F F g x F
x
= −    with ( )0 0 0,F F x x R= ∈  (1.1.) 

where { }( ) ProbF x X x= ≤ is the c.d.f. (cumulative distribution function) of a continuous 

random variable X and ( ),g x F  is an arbitrary positive function for any x R∈  – is 

considered by many authors as a system of c.d.f.(s) generator or simply a system of 
frequency curves (see Rodriguez [161, page 218] or Johnson et al. [13, page 54]). 
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Burr [4] and (Sister) Hatke [11] presented a list of twelve such cdf(s) – denoted from 
I to XII, the most famous being probably the form II, which is just the “logistic curve” 
introduced by the Belgian scientist François Pierre VERHULST (1804-1849) – see Iosifescu et 
all [12, page 285]). 

The majority of cdf(s) are deduced from (1.1.) by taking ( ) ( ),g x F g x=  – that is a 

simpler choice. The form XII – for which Rodriguez elaborated even a “guide” (see [15]) has 
received more attention than the other ones in this family. 

The form XII, that is  ( )( ; , ) 1 1 , 0, , 0
kcF x c k x x c k

−
= − + ≥ >  has been used in 

sampling inspection theory (Zimmer and Burr [20]). Burr also showed that for c ≈ 4.874 and 

k≈6.158 we find that ( )E X ≈ 0.6447 and ( )Var X ≈ 0.1620 (where X is the Burr-type XII 

variable) and the normed variable  ( ) / ( )U X E X Var X= −⎡ ⎤⎣ ⎦  approximates quite well 

the standardized normal variable N (0,1) – see further developments on this subject matter 
in Burr [6], Burr and Cislak [7] and Burr [8]. 

In the last two decades, the Burr-type X distribution, that is 

( ) ( )2; , 1 exp , 0, , 0
b

F x a b ax x a b⎡ ⎤= − − ≥ >⎣ ⎦  (1.2.) 

has attracted the interest of reliability engineers as well as of statisticians since if 
“can be used quite effectively in modeling strength data and also modeling general lifetime 
data” as Raqab and Kundu [14] claimed. 

In fact, (1.2/) is a generalization of Rayleigh cdf: for b = 1we obtain the classical 
form proposed in 1880 by Lord Rayleigh (1842-1919), as the distribution of the amplitude 

resulting from the harmonic oscillations. Since ( ; ,1)F x a  provides a linearly increasing 

failure (hazard) rate ( )( ) / 1 2 , 0, 0h x F F ax x a′= − = ≥ >  this peculiar Burr-type X 

distribution is suitable to describe the irreversible wear-out processes which take place in 
metalworking (grinding and cutting-tool durability analysis). 

The Burr-type XII distribution has been used as a failure model especially in the 
case of censored and multicensored / progressively censored data (Wingo [19]). 

The form (1.1.) has been generalized (see the second author [18]) as below 

d ( ) ( )
d

a bu x v x
x
ϕ ϕ ϕ= +  (1.3.) 

where ( )xϕ  is a positive function for every 0,x ≥ ( )u x  and ( )v x are continuous functions 

and a and  b are two arbitrary real numbers. If  ϕ  is a cdf and ( ) 1, ( ) 1, 1u x v x a= = − =  

and 2b = , one recovers the Burr-Hatke form (1.1). 

The above proposal (1.3.) has the advantage that it can provide not only cdf(s) – as 
(1.1) does – but also pdf(s) – probability density functions and reliability ones. In other words, 
it is more flexible. 

For instance, if we take 1( ) ( ) / , 0, , 0, 0ku x v x kx x k aθ θ−= = ≥ > = and 1b = , 

we shall get ( )( ) 1 exp /kx xϕ θ= − −  which is the famous cdf proposed in 1951 by the 

Swedish scientist Waloddi WEIBULL (1887-1979) – see Johnson et al. [13, page 628]. 
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If we choose ( )2( ) ( / 2 )exp , , ( ) 0, 1u x x x x R v x aπ= − ∈ = = − , for any b R∈  we 

shall obtain the standardized normal pdf ( ) ( )2( ) 1/ 2 exp / 2x xϕ π= − . 

Let us take now a = b = 1, u(x) = -1/x, x ≥ 1, v(x) = - θ, with θ > 0 and 
consequently, from (1.3.) we shall get 

( )1( ) exp 1 , 1, 0x x x
x

ϕ θ θ= − − ≥ >⎡ ⎤⎣ ⎦  (1.4.) 

which is a reliability function (φ(1) = 1, φ(∞) = 0). 
The purpose of this paper is to perform a statistical analysis on the random variable 

having (1.4.) as its survivor function. 
 

2. Straightforward consequences 
 
From (1.4) we can deduce immediately the cdf and pdf of the underlying variable. 

( )1( ; ) 1 exp 1 , 1, 0F x x x xθ θ θ−= − ⋅ − − ≥ >⎡ ⎤⎣ ⎦  (2.1.) 

( ) ( )1 2( ; ) exp 1 , 1, 0f x x x x xθ θ θ θ− −= + ⋅ − − ≥ >⎡ ⎤⎣ ⎦ . (2.2.) 

Since ( ; )f x θ′  is always strictly negative, ( ; )f x θ  is strictly decreasing: the curve associated 

to f  has the starting point of coordinates  ( )1,1 θ+  and a horizontal asymptote 0y = .  

The density curve is therefore of an exponential type which decreases faster than the 
classical exponential pdf. 

The associated hazard rate is: 

( ; ) 1 1( ; ) , 1, 0
1 ( ; )

f x xh x x
F x x x

θ θθ θ θ
θ

+′= = + = ≥ >
−

 (2.3.) 

with ( ) 2; 1/ 0h x xθ′ = − < , that is h is decreasing and in fact it is a peculiar form of the 

general homographic function. Therefore, we investigate a HFR-type variable. 

Another form of a homographic hazard function, namely ( ) ( )2
1 ; / 1 ,h x x xθ θ θ= +  

0, 0x θ≥ >  has been studied by Bârsan-Pipu et al. [2] but this is strictly increasing 

since ( )22
1 / 1 0h xθ θ′ = + > . 

Therefore our form (2.3.) is adequate for modeling the “burn-in” process (or “infant 

mortality” in demographic terms), meanwhile 1( ; )h x θ  is suitable for fatigue and wear-out 

cases. 
 

3. Main indicators and parameter estimation 
 

First, we shall compute the first four raw moments of our HFR-variable – let it be X. 
To this purpose, we shall state 

Property 1. The non-central thm  moment of X , with 2m ≥  can be expressed 

explicitly as 
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( ) ( )
( )

2

0

2 !
1 , 2,3,...

2 !

m
m j

j

mmE X m
m j

θ
θ

−
−

=

−
= + ⋅ =

− −∑  (3.1.) 

The mean-value (the first raw moment) implies a special function – namely the exponential 

integral with negative argument, ( )Ei u− .  

( ) ( )2 2 ( 1) ( 1)

1 1 1

; d d dx xE X x f x x e x xe xθ θθ θ
∞ ∞ ∞

− − − −= = +∫ ∫ ∫   (3.2.) 

Proof.  We shall reach (3.1.) sequentially. For m = 2 we have 

( 1) ( 1)

1
1

1 1 1d 1 1 2 / .x xx e e xθ θθ θ
θ θ θ θ

∞
∞− − − −⎡ ⎤

− + = + + = +⎢ ⎥
⎣ ⎦

∫  

The  expression is the same if we take m = 2 in (3.1.). 
After some more similar integration by parts we shall get 

( ) ( )3 1 3 1 1/ /E X θ θ= + +  (3.3.) 

( ) ( )4 21 4 1 2 / 2 / /E X θ θ θ= + + +  (3.4.) 

For m = 3 and m = 4 in (3.1.) one obtains easily (3.2.) and (3.3.). A simple 
induction will validate (3.1.). 

For m = 1, we have  

( ) ( ) ( 1) ( 1)

1 1 1 1

1; d + d d d
x

x
x x eE X x f x x e x e x e x

x

θ
θ θ θθ θ θ

∞ ∞ ∞ ∞ −
− − − −⎛ ⎞= = = + =⎜ ⎟

⎝ ⎠∫ ∫ ∫ ∫  

( )1 e Eiθ θ= − ⋅ −  (3.5.) 

– see Abramowitz-Stegun [1, page 56] or Smoleanski [17, page 121] where the indefinite 
integral generating this special function is provided as 

2 2

d ln
1! 2 2! !

ax n ne ax a x a xx x
x n n

−

= + + + + +
⋅ ⋅∫  (3.6.) 

(here 0a ≠  could be positive or negative). 

The straightforward consequence is following: one cannot use ( )E X  in order to 

estimate θ  by applying method of moments proposed in 1891 by Karl PEARSON (1857-

1936). Nevertheless we may state 

Property 2. The moment estimator for θ  has the below form  

1 2

2ˆ
1M

in x
θ −=

−∑
 (3.7.) 

where , 1,ix i n=  are sample values on X  ( )1,ix i≥ ∀ . 

The proof is immediate: we have to equate ( )2E X  with the empirical raw second 

order moment 1 2
in x− ∑ . 

Property 3. The log-likelihood equation associated to ( );f x θ  has all its roots 

negative ones, therefore there is no MLE – Maximum Likelihood Estimator forθ . 

Proof. We may write successively 
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( ) ( )2 1

11 1

; exp
n n n

n
i i i i

ii i

L f x x x e xθθ θ θ− − −

== =

⎡ ⎤ ⎛ ⎞= = + ⋅ ⋅ −⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

∑∏ ∏  (3.8.) 

( )2 1

11

ln ln
n n

i i i
ii

L x x x nθ θ θ− −

==

= + ⋅ − +∑∏  (3.9.) 

1 1

ln 0ˆ1

n n
i

i
i ii

xL x n
xθ θ= =

∂
= − + =

∂ +
∑ ∑  (3.10.) 

If we denote 1/i iu x= we shall have 

1 1

1 1 0ˆ
n n

i i ii

n
uuθ= =

+ − =
+

∑ ∑  (3.11.) 

Since1/ 1ix < , the quantity 
1

1n

i i

n
u=

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑   is always positive and hence the equation (3.11.) 

has real roots but all negative ones. Indeed, the function 

( )
1 1

1 1ˆ
ˆ

n n

ii

n
uu

ψ θ
θ

= + −
+

∑ ∑  (3.12.) 

is a decreasing one, since ( ) 0ψ θ′ < . It has a horizontal asymptote 

[ )
1

1ˆ 0,
n

i i

n n
u

θ
=

= − ∈∑  (3.13.) 

For θ̂ = 0, we have ( )0 nψ = , that is the point (0, n) is on the vertical coordinate 

axis. There exists also n vertical asymptotes, namely ˆ 0, 1,iu i nθ = − < =  since 

( )ˆ
ˆlim

iuθ
ψ θ

→
= ±∞  and therefore there are n “cuts” on the horizontal axis that is we have n 

real negative roots. 
It follows that the maximum likelihood method (MLM) does not provide an 

estimator forθ . 
Remark: this situation is not unique; for the so-called power 

law ( ) ( ); , / , 0, 0F x b x b x bδδ δ= > ≤ ≤ , the MLM cannot give MLE(s) for δ  and b (such 

an estimator exists only if b is assumed to be known) – see Bârsan-Pipu et al. [3, pages 73-
75]. 

 

4. Special sampling plans 
 

In this section we shall construct a sampling plan of (n, 0) type for durability testing 

in the case that the time-to-failure obeys the law ( );F x θ  given by (2.1.). 

The problem is in this case to establish the sample size n when the acceptance 
number is A = 0. We have a lot of size N with a given fraction defective p and we fix a 

testing time 0T  for a sample of n product units submitted to a durability test. We have hence 

(see Derman and Ross [10]) 
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( ) ( )0 0
0

1; 1 exp 1p F T T
T

θ θ= = − ⋅ − −⎡ ⎤⎣ ⎦  (4.1.) 

( )1
0 01 exp 1p T Tθ−− = ⋅ − −⎡ ⎤⎣ ⎦ . (4.2.) 

Then, the probability ( )β  to accept the batch during the 0T  testing period, via n tested 

elements is  

( ) ( )0 01 exp 1n np T n Tβ θ−= − = ⋅ − ⋅ −⎡ ⎤⎣ ⎦  (4.3.) 

and by taking the logarithm we have 

( )0 0ln 1 lnn T n Tβ θ= − − −  (4.4.) 

which gives 

( ) [ ]
0 0

ln ,
1 ln

n m
T T

β
θ

⎡ ⎤−
= −⎢ ⎥− +⎣ ⎦

the nearest integer to m. (4.5.) 

In (4.5.) θ  has to be replaced by its moment estimator given by (3.7.), where  ( )2E X  – that 

is the mean-durability of square failure times represented by 2X  has a previous specified 
value. 
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