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Abstract: This paper presents a three-round user strategy (EPM), extending the C 
implementation of Brent’s PRAXIS algorithm by Gegenfurtner. In a first round, EPM applies a 
multistart procedure for global optimization, randomly generating and evaluating multiple sets 
of start values drawn from weighted primary and secondary intervals. Using the parameter 
estimates of the smallest first round minimum, in a second and third round, EPM performs 
iterative minimization runs and applies an additional break-off criterion to improve and 
stabilize the approximated minimum and parameter estimates. Moreover, EPM increases the 
precision of the original PRAXIS implementation by a conversion from the double to the long 
double data type. This conversion is not trivial and even seen to be essential for minimizing a 
complex empirical function from psychometrics. Important special cases of EPM are discussed 
and promising strategies for the handling of EPM are proposed. EPM’s advantages over PRAXIS 
are illustrated using two different functions: a ‘well-behaved’ Rosenbrock function and an ‘ill-
behaved’ psychometric likelihood function. 
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Introduction 
 
Remarks on the PRincipal AXIS (PRAXIS) minimization 

Minimizing functions of several variables is a common and important problem in 
psychology and in natural sciences in general. A popular method is the PRincipal AXIS 
(PRAXIS) minimization by Brent (1973), an algorithm for numerical minimization of 
multivariable functions without the use of derivatives. PRAXIS is a modification of Powell’s 
(1964) direction-set method; for a review of PRAXIS, see Gegenfurtner (1992). Gegenfurtner 
(1992) also provides an implementation of Brent’s algorithm in the programming language 
C which is freely available on the Internet (see Section Availability). 

The PRAXIS algorithm has been applied to a variety of problems in psychology; for 
instance, see Hartinger (1999) and Regenwetter, Falmagne, and Grofman (1999) in decision 
making, D’Zmura, Rinner, and Gegenfurtner (2000) and Heller (2001) in visual perception, 
or Doignon and Falmagne (1985, 1999), Fries (1997) and Ünlü (2006) in the psychometric 
theory of knowledge spaces. Further references on PRAXIS applications in psychological 
sciences are Erdfelder and Buchner (1998) in process-dissociation modeling, Heller (1997) in 
psychophysics, and McClelland and Chappell (1998) in memory research. PRAXIS type 
algorithms have been also applied in fields other than psychology; for instance, see 
Carcione, Mould, Pereyra, Powell, and Wojcik (2001) in computational acoustics, Hwang and 
Tien (1996) in physics, Leroy, Mozer, Payan, and Troccaz (2004) in medical image 
computing, Ren, Chen, Wu, and Yang (2002) and Ren, Wu, Yang, and Chen (2002) in 
nuclear medicine, Tubic, Zaccarin, Beaulieu, and Pouliot (2001) in medical physics, or Woelk 
(2000) in magnetic resonance. 

 
Basic motivations for an Extended Principal axis Minimization (EPM) 

In a realistic context, optimizing an objective function, in general, is more than to use 
a computer and a software application (e.g., PRAXIS), implicitly and unjustifiably assuming 
that (a) the actual optimization exercise utilizing the software is trivial and (b) the obtained 
results are accurate (cf. McCullough & Vinod, 1999). Quite the contrary, (a) optimization 
problems in practice often concern functions with many local extrema rather than being 
globally convex, concave, or otherwise ‘good-natured.’ Moreover, (b) numerical optimization 
algorithms and their software implementations differ in quality (e.g., accuracy of results), 
and one software application is not as good as any other, in general. This, however, is 
mostly hard to assess, especially for software users merely interested in application. 

These points, in particular, apply to Brent’s algorithm and its C implementation by 
Gegenfurtner. (a) PRAXIS generally converges to local minima; hence, minimization results 
strongly depend on the selection of suitable start values (cf. Table 1). Thus, in order to be 
also able to handle complex optimization problems, procedures for global optimization are 
required. Global optimization strategies for the PRAXIS algorithm have not been 
investigated, implemented and freely supplied so far, although there is a large body of 
strategies that could be considered. Methods are, for example, controlled random search 
(Price, 1983), evolutionary and genetic algorithms (Back & Schwefel, 1993), or multistart 
methods (Törn & Zilinskas, 1989). For a review of these approaches, see Pintér (1995). In 
this paper, we extend the original PRAXIS algorithm to Extended Principal axis Minimization 
(EPM) to offer a natural, flexible multistart procedure for global optimization. This provides a 
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facilitation of usage resulting in improved and effective applications of PRAXIS (PRAXIS, 
currently, being merely available as a ‘bare’ C function). 

Moreover, (b) the accuracy of the PRAXIS algorithm can be improved by three natural 
techniques: iterative minimization runs with reset program settings, an additional break-off 
criterion besides the PRAXIS algorithm’s default criterion, and a conversion from the double 
to the long double data type. The EPM strategy proposed in this paper implements these 
techniques.  

In the iterative part, EPM successively uses resulting parameter estimates as vectors 
of start values for new runs of the complete PRAXIS routine with reset internal program 
settings. The use of a second break-off criterion based on a minimal change in 
approximated minima, while PRAXIS applies a default criterion based on a minimal change 
in parameter estimates, supplements the iterative part to offer the possibility of improving 
and stabilizing the approximated minimum and parameter estimates. Finally, to gain more 
computational precision for complex optimization problems, EPM uses the long double data 
type instead of the double data type of the original PRAXIS implementation.5 

A conversion from the double to the long double data type, however, is not trivial. It 
cannot be accomplished by simply altering the declaration/definition of variables in the 
original C source files (e.g., ‘long double tol’ instead of ‘double tol’). A conversion requires 
the use of long double functions instead of double functions (e.g., ‘long double sqrtl(long 
double)’ instead of ‘double sqrt(double)’), and it should also consider changing the data type 
of relevant constants (e.g., ‘0.0L’ instead of ‘0.0’), throughout the entire source files. On the 
other hand, the conversion from the double to the long double data type is even seen to be 
essential for minimizing the empirical psychometric function in Subsection LCMRE function. 
Optimization of the Latent Class Model with Random Effects (LCMRE) likelihood function, 
which is based on real psychological test data, was not possible using the double (data type) 
versions of PRAXIS and EPM. Apparently, this was due to rounding errors that resulted in 
undefined operations (e.g., division by zero), and consequently, in undefined values for a 
minimum or parameter estimate. Use of the long double data type simply accommodated 
this problem. 

In the end, the different components of EPM can be combined with each other to 
give important special cases of the EPM strategy in practice. Additionally enhanced by a 
multiplicity of intra-component strategies for the handling of individual components, this 
offers a great flexibility of usage in the actual minimization exercise utilizing the EPM 
extension (cf. Fig. 3). 

 
Additional notes  

Similar to optimization heuristics such as simulated annealing, genetic algorithms, 
or ant colonies (for details and further references, see, e.g., Winker, 2001, and Winker & 
Gilli, 2004), EPM allows ‘uphill moves’, that is, larger minima in consecutive iterations than 
in previous ones. Throughout its three rounds, however, EPM stores the smallest minimum 
found and the corresponding parameter estimates globally, and outputs them as the final 
solution (cf. Fig. 2). 

EPM is implemented in C programming language (ANSI C 99). The function is held 
very general, so it can be easily used with other algorithms available in C/C++ without 
extensive modifications. The source code for EPM is freely available from the authors. 
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It shall be also noted that the long double (data type) versions of PRAXIS and EPM 
do not run on Windows 32 systems (95, 98, NT, Me, 2000, XP) properly. On these systems, 
the long double data type is directly mapped to the double data type. To overcome this 
limitation on Windows systems, extensive workarounds are necessary. 

 
 

Architecture of EPM 
The EPM strategy consists of three rounds which are described next. In all rounds, 

the user can additionally specify the PRAXIS settings.6 An overview of the EPM strategy is 
schematically shown in Fig. 2. In Section Examples, EPM and the original PRAXIS routine are 
implemented using both the double and the long double data type. 
 
Round 1 

In Round 1, EPM applies a variant of a multistart procedure to cover global 
optimization. Such procedures generally produce a set of random start value vectors and 
evaluate an objective function at these vectors. Then a number of start value vectors with the 
lowest function values are selected from this initial set of vectors and local search methods 
are applied. EPM uses a variant of such a multistart procedure. A number of start value 
vectors are randomly generated based on a specific ‘three-interval-uniform-sampling’ 
design. An objective function is evaluated at these vectors using the PRAXIS algorithm. The 
parameter estimates of the best candidate vector of start values resulting in the smallest 
minimum are then locally investigated in subsequent rounds of EPM. 

More precisely, in Round 1, a number { }1 : 1, 2,N ∈ =` …  of start value vectors are 

randomly generated based on user specified, weighted primary and secondary intervals (see 
Fig. 1). The primary interval is determined by a center point C and a number d > 0 as [C – d, 
C + d]. Two secondary intervals surrounding the primary interval are specified by a number 
e > d as [C – e, C – d) and (C + d, C + e]. The probability for sampling a value from the 

primary interval is specified by a weight 0 1w≤ ≤ , and consequently, the probability for 
sampling a value from any of the two secondary intervals is set to (1 – w) / 2 each. For all 
intervals, start values are randomly drawn using uniform distributions. That is, the density 

function for the primary interval is 
1/ 2   for 

( ) :
0  elsep

d C d t C d
f t

− ≤ ≤ +⎧
= ⎨
⎩

, and for the 

secondary intervals they are given by 1

1/( )  for 
( ) :

0  else s

e d C e t C d
f t

− − ≤ < −⎧
= ⎨
⎩

 and 

2

1/( )  for 
( ) :

0  else s

e d C d t C e
f t

− + < ≤ +⎧
= ⎨
⎩

, respectively (t, a real number). The constants C, 

d, e, and w can be chosen from the set \  of real numbers, within the limitations of the 
respective data type used in the implementation.5 The objective function is evaluated at each 

of the 1N  randomly generated start value vectors by performing a minimization run with 

PRAXIS. The parameter estimates of the best candidate vector of start values resulting in the 
smallest minimum are then locally investigated in subsequent Rounds 2 and 3 of the EPM 
strategy. 
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Figure 1. Random sampling of start values based on (a) the three-interval-uniform-sampling 

design and (b) the normal distribution 
(a)  Three-interval-uniform-sampling design: For all intervals, start values are randomly drawn using uniform 

distributions. Given pf  the density function for the primary interval, and 1sf  and 2sf  the density functions for 

the secondary intervals, let ( )1 2
1:

2p s s
ww f f fψ −

= ⋅ + ⋅ + .  

(b)  Normal distribution: Start values are randomly drawn using the Gaussian density (.; , )φ μ σ  with mean μ  

and standard deviation σ . To sample a value from the primary interval with a given probability (weight) w 

(strictly between zero and one), we have to solve the equation 2 ( ;0,1) 1w z= ⋅Φ −  for z, where 

(.; , )μ σΦ  is the Gaussian cumulative distribution function to (.; , )φ μ σ . Consequently, the probability for 

sampling a value from any of the two secondary intervals is (1 – w) / 2 each. Given this weight distribution over 
the primary and secondary intervals, every required spread d of the primary interval can be achieved by the 

choice of σ ; simply solve the equation d zσ=  for σ  (for given d and z).   

 
Some remarks are in order with respect to this sampling design.  
1. In a clear and straightforward manner, this design represents a natural modeling 

approach to capturing subjective confidences PRAXIS users may have in promising parameter 
regions for global minima. This modeling approach is gradual, in the sense that stronger 
subjective confidence regions can be covered by primary intervals while weaker ones are 
covered by secondary intervals, differentiated by the choices of weights. A strategy for a 
concrete specification of this sampling design, of course, strongly depends on the properties 
of an objective function and the prior knowledge about the latter. For instance, if no prior 
information about a function is available, a promising strategy may be the specification of a 
large number of start value vectors, an extensive primary interval, large secondary intervals, 
and weak PRAXIS settings2 (to reduce computational efforts). If there is, however, prior 
knowledge of the region for a global minimum, it may be promising to focus on that region 
with a narrow primary interval (d small), negligible secondary intervals (e close to zero), and 
a weight close to unity.  

2. If we set the weight to unity, as an important special case in practice, we obtain 
uniform sampling from the primary interval only; secondary intervals are no longer 
considered. The width of this single sampling (primary) interval can be further gradually 
sharpened up by limiting the constant d to zero. This allows a great flexibility in narrowing 
down promising parameter regions. An overview of the special cases of the EPM strategy is 
schematically shown in Fig. 3.  
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Figure 2.  Overview of the EPM strategy. The EPM strategy can be implemented using both 

the double and the long double data type. ‘MT19937 RNG’ stands for the 
Mersenne Twister 19937 (uniform pseudo) random number generator 
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3. There are, of course, alternative sampling designs for the random generation of 
start value vectors (see Section Discussion). One alternative, for instance, is based on the 
normal distribution (with fixed weight distribution over the primary and secondary intervals). 
In this alternative, the user has to specify only two constants (mean as the center point and 
standard deviation as the spread) instead of having to specify the constants C, d, e, and w of 
the three-interval-uniform-sampling approach. Such alternative designs, however, generally 
come with a loss of modeling of subjective confidences for promising parameter regions. In 
general, this modeling is not that clear, straightforward, and natural anymore under such 
alternatives. 

4. For the implementation of probabilities, EPM utilizes the Mersenne Twister (MT) 
19937. MT19937 is a uniform pseudorandom number generator which was developed by 
Matsumoto and Nishimura (1998). It provides fast generation of high quality random 
numbers (e.g., period 219937 – 1), and rectifies many of the flaws found in older generators 
(e.g., Wichmann-Hill random number generator; Wichmann & Hill, 1982, 1984). MT19937 
is freely available on the Internet (see Section Availability).   

 
Round 2 

The best vector of parameter estimates in Round 1 is the most promising candidate 
for further minimization analyses in its neighborhood. Based on these parameter estimates, 
in Round 2, EPM performs iterative loops successively reapplying resulting parameter 
estimates as start values for new runs of the PRAXIS routine. This offers the possibility of 
improving minimization results. The best Round 2 results are then subject to stabilization 
analyses in Round 3. 

More precisely, in Round 2, EPM performs a number { }2 0 : 0N ∈ = ∪` `  of 

iterative minimization runs. Starting with the best parameter estimates of Round 1, the 
resulting parameter estimates of each iteration are passed to the next iteration as start 
values for a new run of the PRAXIS routine. Though PRAXIS is internally based upon an 
iterative procedure, running the complete PRAXIS routine afresh with reset program settings 
according to this iterative paradigm generally improves the minimization results. The 
obtained minimum and parameter estimates can be steadily improved, allowing refined, 
closer approximations to the true values. The best Round 1 minimum and the corresponding 
vector of parameter estimates are globally stored in variables mglob  and vglob, respectively. In 

each of the 2N  iterations, the current minimum mcur  and the corresponding vector of 

parameter estimates vcur  are globally stored in mglob  and vglob, respectively, if mcur < mglob. This 
assures that the smallest minimum and the corresponding vector of parameter estimates 
found across all previous runs are stored, even if a slightly growing minimum is obtained for 
an iteration (which may occur since PRAXIS applies a minimal change in parameter estimates 
as the default break-off criterion; as mentioned in Subsection Additional notes, EPM allows 
‘uphill moves’). Round 2 finally closes with the smallest minimum found so far, and the 
corresponding parameter estimates. These results are then subject to stabilization analyses 
based on an additional break-off criterion in Round 3. 

Some remarks are in order with respect to this iterative paradigm.  
1. A strategy for Round 2 depends on the complexity of an objective function and 

the computational effort required minimizing it. The more complicated an objective function 
is to minimize, the more processing time is required if a larger number of iterations and 
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stronger PRAXIS settings are specified in Round 2. A promising strategy could be, for 
instance, the selection of a larger number of iterations and weak to medium PRAXIS settings. 

2. Running PRAXIS afresh with reset settings according to this iterative paradigm 
generally improves the obtained results. In Section Examples smaller minima could be 
obtained for about 20 to 30 iterative runs. This was especially true for weaker PRAXIS 
settings. 

3. The EPM strategy offers a great flexibility of usage. As a special case of EPM, the 
number of iterations in Round 2 can be set to zero, so the user is able to merely apply the 
PRAXIS routine with the multistart (global optimization) procedure of Round 1 and the 
stabilization stage (additional break-off criterion) in Round 3. Additionally setting the number 
of iterations in Round 3 to zero yields another important special case of the EPM strategy, 
PRAXIS enhanced for global optimization by the multistart procedure of Round 1 only. For an 
overview of the special cases of the EPM strategy, see Fig. 3. 

 
Round 3 

In Round 3, the iterative loops of minimization runs are supplemented by the 
application of an additional break-off criterion. The purpose of Round 3 is to stabilize the 
minimization results. The best Round 3 minimum and the corresponding parameter 
estimates, that is, the best minimization results across all three rounds of EPM, are output as 
the final solution of the EPM strategy. 

More precisely, as in Round 2, in Round 3 EPM performs a maximum number 

3 0N ∈`  of iterative minimization runs. Starting with the globally stored best parameter 

estimates obtained in Round 2, the resulting parameter estimates of each iteration are 
passed to the next iteration as start values for a new minimization run. In each iteration, the 
current minimum (mcur) and the corresponding vector of parameter estimates are globally 
stored if mcur < mglob. In contrast to Round 2, however, this time the iterative part is combined 
with the application of an additional break-off criterion. While PRAXIS internally applies a 
minimal change in estimated parameter vectors as the default break-off criterion (see 

Gegenfurtner, 1992), EPM introduces a (in general small) number 0c ≥  as an additional 
break-off criterion based on a minimal change in the approximated minimum mcur of a 
current run and the globally stored smallest minimum mglob found across all previous runs so 

far. If ,cur globm m c− ≤  EPM stops the iterative loops. As long as changes larger than the 

criterion c occur, upwards or downwards, EPM continues the iterative loops, until the 

maximum number of iterations 3N  is reached. That way the results can be stabilized in 

general, in the sense that the iterations stop when the obtained minimum does not vary 
anymore, except for minimal changes quantified by a small c. Round 3, and in particular, 
EPM, finally close with the smallest minimum and the corresponding parameter estimates 
found across all three rounds. These best results of the minimization exercise utilizing EPM 
are globally stored (mglob and vglob, respectively) and output as the final solution of the EPM 
strategy. 

Some remarks are in order with respect to this stabilization stage. 
1. A strategy for Round 3 depends on the computational effort required minimizing 

an objective function. The more complicated an objective function is to minimize, the more 
processing time is required if a larger number of iterations, a stricter break-off criterion c, 
and stronger PRAXIS settings are specified in Round 3. A promising strategy could be, for 



  
Quantitative Methods Inquires 

 
52 

instance, the selection of a smaller number of iterations, a strict break-off criterion, and 
strong PRAXIS settings.  

2. Why do we continue the iterative procedure in Round 3, combined with the use 
of an additional break-off criterion not already applied in Round 2? This iterative procedure 
in general improves the obtained results (see Section Examples). Applying the additional 
break-off criterion already in Round 2 would have the disadvantage of generally stopping 
the iterations at an earlier stage of steady improvement; hence, yielding only suboptimal 
results in general. Therefore, the iterative loops are continued and the break-off criterion is 
first applied in Round 3, after the ‘burn-in’ iterations in Round 2. The break-off criterion then 
captures whether gained improvements stabilize in best results (except for minimal variations 
quantified by the criterion).  

3. As a special case of EPM, the number of iterations in Round 3 can be set to zero, 
so the user is able to apply the PRAXIS routine with the multistart procedure of Round 1 and 
the iterative procedure (without the additional break-off criterion) in Round 2 only (see Fig. 
3). 

 

 
Figure 3. Diagram of the special cases of the EPM strategy 
Transitivity is not explicitly depicted in the diagram; for instance, ‘Round 1 / Primary interval’ is a special case of 

‘Round 1, Round 2 / Primary and secondary intervals’ (imposed restrictions: w = 1 and 2 0N = ). As an 

example of a special case of the general EPM strategy (vertex ‘Round 1, Round 2, Round 3 / Primary and 

secondary intervals’), the number of iterations in Round 2 can be set to zero (edge 2 0N = ), so the user is able 

to merely apply the PRAXIS routine with the multistart procedure of Round 1 and the stabilization stage in Round 
3 (vertex ‘Round 1, Round 3 / Primary and secondary intervals’). Additionally setting the number of iterations in 

Round 3 to zero (edge 3 0N = ) yields another important special case, PRAXIS enhanced for global 

optimization by the multistart procedure of Round 1 only (vertex ‘Round 1 / Primary and secondary intervals’). 
 

Examples 
EPM improves the original PRAXIS implementation by four extensions: the automatic 

generation and evaluation of random start value vectors (multistart procedure for global 
optimization), the iterative loops to approach the true minimum and parameter values, an 
additional break-off criterion to stabilize minimization results, and a conversion from the 
double to the long double data type.  

To illustrate EPM’s advantages over the original PRAXIS implementation, we ran 
basic minimization trials using two different functions: a Rosenbrock function and a complex 
empirical function from psychometrics. We contrasted results obtained based on different 
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start value vectors (for different specifications of the three-interval-uniform-sampling design), 
PRAXIS settings (maxfun = 0 and maxfun = 1), and double as well as long double data type 
versions of both the EPM and PRAXIS implementations.  

Apart from the maxfun setting, in each case we used the following PRAXIS settings: 
tol = 1.000E-20, ktm = 1, step = 1.000, and scbd = 1.000. In each case the EPM strategy 

generated 1 20N =  start value vectors (for different specifications of the sampling design), 

performed 2 20N =  Round 2 and a maximum number 3 20N =  Round 3 iterations, and 

applied an additional break-off criterion c = 1.000E-14. All computations were performed 
on a laptop computer with a Pentium II 366 MHz processor and 256 MB RAM running a 
LINUX system (SUSE LINUX 9.0). 
 
Rosenbrock function 

The Rosenbrock function in Fig. 4 is often considered as a test problem for 

optimization algorithms. It is a two-variable unimodal function ( ,x y∈\ ) 
2 2 2( , ) : (1 ) 100 ( ) ,f x y x y x= − + ⋅ −  

which has a unique global minimum 0 at the point (1, 1). 

 
Figure 4. Plot of the Rosenbrock function 
At any location other than (1, 1) this function has no local extremum. We will, however, make the following 

important observation (concerning the robustness of the PRAXIS routine against ‘bad’ choices of start values): 
Using vectors of start values distant to (1, 1) will cause PRAXIS to misleadingly converge and stop the 
minimization process at, in each case, different locations (not only far from the true location) the Rosenbrock 
function has no local minima at all. 

 
For EPM’s sampling design in Round 1, in each case we used the following constants: 

C = 0.000 (center point), d = 5.000 (primary interval), e = 105.000 (secondary intervals), 
and w = 0.800 (weight).  

 
Results for the double versions: First, we consider the results obtained for the double 
versions of EPM and PRAXIS (see Table 1). 
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For the maxfun = 1 setting, EPM yielded a minimum of 3.420E-04. The Euclidean 
distance of the vector of parameter estimates to the point (1, 1) at which the global 
minimum is attained was 4.099E-02. For the original PRAXIS implementation we applied two 
different vectors of start values. First, we ran PRAXIS with the start values that resulted in the 
smallest minimum in EPM’s Round 1; in this condition, PRAXIS yielded a minimum of 3.567E-
03. The Euclidean distance of the vector of parameter estimates to the point (1, 1) was 
1.367E-01. Second, we used a start value vector (8.566E+02, 3.126E+03) more distant to 
the location of the global minimum; in this condition, PRAXIS yielded a minimum of 
5.265E+13. The Euclidean distance of the vector of parameter estimates to the coordinates 
of the global minimum was 3.241E+03.  

For the maxfun = 0 setting, EPM yielded a minimum of 1.171E-18. The 
corresponding Euclidean distance was 2.420E-09. Again, for PRAXIS we applied two different 
start value vectors. Running PRAXIS with the start values that resulted in the smallest 
minimum in EPM’s Round 1 yielded a minimum of 1.173E-18, with the corresponding 
Euclidean distance 2.423E-09. A start value vector (8.566E+02, 3.126E+03) distant to the 
point (1, 1) resulted in a minimum of 3.334E+03. The Euclidean distance of the vector of 
parameter estimates to (1, 1) was 3.450E+03.  
 
Results for the long double versions: In a second step, we consider the results obtained 
for the long double versions of EPM and PRAXIS (see Table 1). 

 
For maxfun = 1, EPM yielded a minimum of 7.246E-12. The corresponding 

Euclidean distance was 6.019E-06. Using the start values that resulted in the smallest 
minimum in EPM’s Round 1, PRAXIS yielded a minimum of 2.827E-01. The Euclidean 
distance of the vector of parameter estimates to the point (1, 1) was 2.593E-01. A start value 
vector (-7.178E+01, 1.912E+00) more distant to the location of the global minimum 
resulted in a minimum of 2.235E+09, with the corresponding Euclidean distance 
6.984E+01.  

For maxfun = 0, EPM yielded a minimum of 9.284E-23. The corresponding 
Euclidean distance was 2.154E-11. Using the start values that resulted in the smallest 
minimum in EPM’s Round 1, PRAXIS yielded a minimum of 3.899E-18. The corresponding 
Euclidean distance was 1.406E-10. Running PRAXIS with a second set of start values            
(-3.342E+00, 1.480E+00) yielded a minimum of 3.712E-14. The Euclidean distance of the 
vector of parameter estimates to the point (1, 1) was 3.902E-08.  
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Table 1. Minimization results for the Rosenbrock function 

Method Start Values1 Parameter Estimates Minimum Euclidean Distance2 t3 

Double version using maxfun = 1 

EPM 5.990257138849760E-02 1.018301802095190E+00 3.420357271720240E-04 4.098569120465070E-02 <1 

 1.860718519161620E+00 1.036672481830270E+00   

PRAXIS 5.990257138849760E-02 1.059722401501310E+00 3.566765242372130E-03 1.367427630163140E-01 <1 

 1.860718519161620E+00 1.123011454735940E+00   

PRAXIS 8.566400000000000E+02 8.536400000000000E+02 5.264567074311800E+13 3.241054773017570E+03 <1 

 3.125890000000000E+03 3.127890000000000E+03   

Double version using maxfun = 0 

EPM 2.997958114835880E+00 1.000000001082150E+00 1.171066722436550E-18 2.419769930378260E-09 <1 

 -3.491414211106350E-01 1.000000002164310E+00   

PRAXIS 2.997958114835880E+00 1.000000001082150E+00 1.172603864548440E-18 2.423276700426840E-09 <1 

 -3.491414211106350E-01 1.000000002168230E+00   

PRAXIS 8.566400000000000E+02 5.874360983932630E+01 3.334337413888250E+03 3.450306297249240E+03 <1 

 3.125890000000000E+03 3.450823070877760E+03   

Long double version using maxfun = 1 

EPM 2.529086281435810E+00 1.000002691874950E+00 7.246190765643310E-12 6.019221859832670E-06 <1 

 -7.754252305662780E-01 1.000005383757150E+00   

PRAXIS 2.529086281435810E+00 1.129664363507910E+00 2.827263823354180E-01 2.593196371856940E-01 <1 

 -7.754252305662780E-01 1.224574769433720E+00   

PRAXIS 
-

7.178368032444260E+01 -6.878368032444260E+01 2.234725392149370E+09 6.984439495385250E+01 <1 

 1.911608978852530E+00 3.911608978852530E+00   

Long double version using maxfun = 0 

EPM 4.217765044704490E+00 1.000000000009630E+00 9.283854970219120E-23 2.154224020857930E-11 <1 

 1.595741204590470E+00 1.000000000019270E+00   

PRAXIS 4.217765044704490E+00 9.999999999699350E-01 3.899038824864630E-18 1.405531120156460E-10 <1 

 1.595741204590470E+00 1.000000000137300E+00   

PRAXIS 
-

3.342191534662190E+00 1.000000009322850E+00 3.711604876093000E-14 3.901879148096910E-08 <1 

 1.480348412059320E+00 1.000000037888660E+00   

Note: Apart from the maxfun setting, in each case we used the following PRAXIS settings: tol = 1.000E-20, ktm = 
1, step = 1.000, and scbd = 1.000. In each case the EPM strategy generated 

1 20N =  Round 1 start value 

vectors, performed 
2 20N =  Round 2 and a maximum number 

3 20N =  Round 3 iterations, and applied an 

additional break-off criterion c = 1.000E-14. All computations were performed on a laptop computer with a 
Pentium II 366 MHz processor and 256 MB RAM running a LINUX system (SUSE LINUX 9.0). In each case we 
used the following constants for EPM’s three-interval-uniform-sampling design in Round 1: C = 0.000 (center 
point), d = 5.000 (primary interval), e = 105.000 (secondary intervals), and w = 0.800 (weight).  
1For EPM, the start values are the random start values that resulted in the smallest minimum in Round 1. In 

particular, we ran PRAXIS with these start values (obtained from Round 1 of EPM), and with a second 
collection of start values. 

2Euclidean distance of the vector of parameter estimates to the point (1, 1) at which the unique global 
minimum 0 is attained. 

3Processing time in seconds. Note that for EPM this is the processing time required across all three rounds. 
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As summarized in Table 1, EPM achieved (partially substantial) smaller minima and 
Euclidean distances than PRAXIS in all conditions. The same results were even found on the 
level of individual parameter estimates (i.e., not only for aggregate Euclidean distances). In 
any condition, EPM yielded individual parameter estimates closer to 1 than the original 
PRAXIS routine (cf. also the remark in Subsection LCMRE function). All this was especially true 
for the maxfun = 1 setting, under both the double and the long double versions. Finally, 
processing times were below 1 second across all conditions.  

In particular, we made the following important observation concerning the 
robustness of the PRAXIS routine against ‘bad’ choices of start values. The results in Table 1 
pointed out that PRAXIS was not robust against choices of start values more distant to the 
location of the global minimum. Using vectors of start values distant to (1, 1) caused PRAXIS 
to misleadingly converge and stop the minimization process at, in each case, different 
locations (not only far from the true location) the Rosenbrock function has no local minima at 
all. This turned out to be the case for both the double and the long double version of PRAXIS, 
under any of the settings maxfun = 1 and maxfun = 0. This may underline the importance of 
the multistart procedure implemented in EPM’s Round 1 (cf. Table 1). 

 
 
LCMRE function 

The Latent Class Model with Random Effects (LCMRE) function is a negative  
log (kernel of) likelihood function which is derived based on a probit regression latent class 
modeling with random effects (for details, see Ünlü, 2006). It is a complex empirical function 
which has been originally proposed by Qu, Tan, and Kutner (1996) for the estimation of the 
accuracy (sensitivity and specificity) of a diagnostic test for screening individuals in biometrics 
(see also Hadgu & Qu, 1998; Hui & Zhou, 1998; Qu & Hadgu, 1998). Recently, Ünlü (2006) 
has adapted and applied this approach for the estimation of response error (careless error 
and lucky guess) probabilities when examinees respond to dichotomous test items in the 
psychometric theory of knowledge spaces. 

The LCMRE function depends on the observed binary response data, and any 
information about extrema of this function is lacking. Such kind of ‘ill-behaved’ function is 
more difficult to minimize. However, this is close to optimization problems in practice.  

Briefly, the LCMRE function is defined as  
 

1 20
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0 1 12
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where 

 

(1) : { : 1,2,..., }lQ I l m= =  is a set of m∈`  dichotomously scored test items (a 

correct answer is scored 1 and an incorrect answer 0), and 2Q  is the power-set of Q; 

(2) 2QR∈  denotes the set of test items solved by a subject (response pattern), and 

( ) {0,1} (1 )ls R l m∈ ≤ ≤  are the lth entries of R’s representation as m-list of 0’s and 1’s; 
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(3) the data 
2

: ( ( )) QR
x N R

∈
=  are represented by the observed absolute counts 

0( )N R ∈`  of the response patterns 2QR∈ ; 

(4) 10 20 0 11 21 1 0 1 1: ( , ,..., , , ,..., , , , )m ma a a a a a b bθ τ=  is the parameter vector to be 

estimated which ranges over the parameter space 2 2: (0,1)m+Θ = ×\ , and we have 

0 1 1τ τ+ = ; 

(5) : [0,1]Φ →\  is the cumulative distribution function of a unit normal variate; 

(6) { }0( , ) : 1, 2, , 20j jt w j>∈ ∈ =\ \ …  is a set of (known) constants obtained from 

the 20th order Gauss-Hermite quadrature.  
Based on the classical unrestricted 2-classes latent class model (the psychological 

model assumed to underlie the responses of a subject; see Ünlü, 2006) we simulated a 

binary (of type 0/1) 1500 7×  data matrix representing the response patterns of 1500 

fictitious subjects to m = 7 test items. These data and the C source code for simulating these 
data are freely available from the first author. This data set was the basis for the subsequent 
analyses. 
 
Results for the double versions: First, we consider the results obtained for the double 
versions of EPM and PRAXIS (see Table 2). 

Computations using the double versions were not possible for the LCMRE function; 
we tried a great many start value vectors from a great many parameter regions, and a great 
many specifications of the EPM strategy. Apparently, due to rounding errors by limitations of 
the double data type, we received undefined operations, and consequently, undefined 
minima or parameter estimates. Thus, in this example, the conversion from the double to the 
long double data type was essential for making minimization of that psychometric function 
possible at all. Use of the long double data type accommodated this problem easily. 

 
 
Results for the long double versions: In a second step, we consider the results obtained 
for the long double versions of EPM and PRAXIS (see Table 2). 

Computations using the long double versions could be performed. For EPM’s 
sampling design in Round 1, in each case we used the following constants: C = 0.000 
(center point), d = 0.200 (primary interval), e = 0.500 (secondary intervals), and w = 0.900 
(weight). Because we do not have any information about extrema of the LCMRE function, we 

computed the Euclidean distances between the vectors of 2 7 3 17⋅ + =  parameter estimates 
under EPM and PRAXIS.  

For the maxfun = 1 setting, EPM yielded a minimum of 5.248E+03 and PRAXIS 
(using EPM’s Round 1 best vector of start values) resulted in a minimum of 5.297E+03. The 
Euclidean distance of the EPM vector of parameter estimates to the PRAXIS vector of 
parameter estimates was 4.541E+01.  

For the maxfun = 0 setting, EPM yielded a minimum of 5.055607181239010E+03 
and PRAXIS (using EPM’s Round 1 best vector of start values) resulted in a minimum of 
5.055607199977240E+03. The corresponding Euclidean distance was 2.469E+00. 
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Table 2. Minimization results for the LCMRE function 

Method Minimum Euclidean Distance1 t2 

Double version using maxfun = 1 
EPM 1.#QNAN <1 
PRAXIS 1.#QNAN 

– 
<1 

Double version using maxfun = 0 
EPM 1.#QNAN <1 
PRAXIS 1.#QNAN 

– 
<1 

Long double version using maxfun = 1 
EPM 5.247813256004320E+03 624 
PRAXIS 5.297099870217230E+03 

4.541479081653670E+01 
17 

Long double version using maxfun = 0 
EPM 5.055607181239010E+03 845 
PRAXIS 5.055607199977240E+03 

2.469200259958340E+00 
18 

Note: Apart from the maxfun setting, in each case we used the following PRAXIS settings: tol = 

1.000E-20, ktm = 1, step = 1.000, and scbd = 1.000. In each case the EPM strategy generated 

1 20N =  Round 1 start value vectors, performed 
2 20N =  Round 2 and a maximum number 

3 20N =  

Round 3 iterations, and applied an additional break-off criterion c = 1.000E-14. All computations 
were performed on a laptop computer with a Pentium II 366 MHz processor and 256 MB RAM 
running a LINUX system (SUSE LINUX 9.0). Computations using the double versions were not 
possible (indicated by ‘1.#QNAN’ and ‘–’). Due to rounding errors by limitations of the double data 
type, we received undefined operations. Computations using the long double versions, however, 
could be performed. For the long double versions, in each case we used the following constants for 
EPM’s three-interval-uniform-sampling design in Round 1: C = 0.000 (center point), d = 0.200 
(primary interval), e = 0.500 (secondary intervals), and w = 0.900 (weight). In particular, we ran 
PRAXIS with the random start values that resulted in the smallest minimum in Round 1 of EPM.  
1Euclidean distance of the EPM vector of parameter estimates to the PRAXIS vector of parameter 
estimates. 
2Processing time in seconds. Note that for EPM this is the processing time required across all three 
rounds. 

 
As summarized in Table 2, the conversion from the double to the long double data 

type turned out to be important for the psychometric LCMRE function; minimizing this 
function using the double versions of EPM and PRAXIS was not possible.  

Computations, however, could be performed using the long double versions. EPM 
achieved (partially substantial) smaller minima than PRAXIS in both conditions maxfun = 1 
and maxfun = 0. In particular, we found parameter estimates under EPM and PRAXIS clearly 
deviating from each other, even in the maxfun = 0 condition. Finally, processing times using 
EPM were 624 and 845 seconds in the conditions maxfun = 1 and maxfun = 0, respectively, 
contrary to PRAXIS with 17 (maxfun = 1) and 18 (maxfun = 0) seconds. 

An important remark is in order with respect to deviations in the parameter 
estimates. Though the approximated minima in the condition maxfun = 0 differed only 
minimally (compared to the larger deviations in the condition maxfun = 1), the parameter 
estimates yielded a clearer difference. This, however, may be a crucial factor in practical 
applications. In general, a user is primarily interested in the optimizing parameter estimates. 
The LCMRE function, for instance, is used for maximum likelihood estimation of response 
error probabilities for dichotomous test items in psychometrics. These probabilities, however, 
are functions of the parameter estimates (see Ünlü, 2006). In particular, deviations in the 
parameter estimates may occur and be empirically important (in the current example, 
resulting in better maximum likelihood estimates for the response error rates of the 
underlying classical unrestricted 2-classes latent class model), even if the approximated 
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minima differ only slightly. Hence, from an empirical point of view, (even little) 
improvements in approximated minima may be desirable, and thus longer processing times 
may be acceptable. 

 

Discussion 
 

Summary 
We have introduced, implemented and applied the three-round EPM strategy to 

improve the original PRAXIS implementation by four extensions (cf. Fig. 2): a multistart 
procedure to cover global optimization, iterative loops to approach the true minimum and 
parameter values, an additional break-off criterion to stabilize minimization results, and a 
conversion from the double to the long double data type to increase computational precision 
for complex optimization problems. We have also seen that this strategy offers a number of 
important special cases in practice (cf. Fig. 3), and thus provides the user with a great 
flexibility in the actual minimization exercise utilizing the EPM extension. 

EPM’s advantages over the original PRAXIS implementation have been illustrated 
using two different functions: a ‘well-behaved’ Rosenbrock function (see Fig. 4) for which the 
global minimum and its corresponding coordinates are known, and an ‘ill-behaved’ complex 
empirical function from psychometrics for which any information about extrema is lacking. 
For both functions, across all conditions, EPM improved (partially substantial) the 
minimization results obtained using merely the original PRAXIS implementation (see Tables 1 
and 2). Processing times, however, increased for the LCMRE function using EPM. 
Nevertheless, in practical applications, (even little) improvements in approximated minima 
may be worthwhile (e.g., yielding better maximum likelihood estimates for empirically 
interpreted functions of the parameter estimates), and thus longer processing times may be 
acceptable. 

We have observed that a not necessarily trivial (see Subsection Basic motivations for 
an Extended Principal axis Minimization (EPM)) conversion from the double to the long 
double data type can significantly improve computational precision. As demonstrated with 
the LCMRE function, for some complex empirical minimization problems the long double 
data type may be essential for performing principal axis minimization based on the original 
PRAXIS implementation. For such problems, computational values may exceed the limitations 
of the double data type, resulting in undefined operations (e.g., division by zero), and 
consequently, yielding undefined results (see Table 2). Moreover, for the Rosenbrock function 
we have observed that the original PRAXIS implementation was not robust against ‘bad’ 
choices of start values. Using start value vectors more distant to the location of the global 
minimum caused PRAXIS to misleadingly converge and stop the minimization process at, in 
each case, different locations not only far from the true location, but at which the 
Rosenbrock function has no local minima at all. The EPM strategy easily accommodated 
these two observations by implementing double as well as long double versions (cf. Table 2) 
and a multistart procedure for global optimization (cf. Table 1), respectively. 

 
Further extensions and modifications 

As mentioned in Subsection Round 1, there are, of course, other sampling designs 
for the random generation of start value vectors than the three-interval-uniform-sampling 
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approach applied in this paper. One alternative could be based on the family of two-
parameter normal distributions (Gaussian densities) 

[ )
2

0
1 1: 0, ,  ( ; , ) : exp     ( , )

22
tt t μφ φ μ σ μ σ
σσ π >

⎛ ⎞−⎛ ⎞→ +∞ = − ∈ ∈⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
6R R R  

(cf. Fig. 1). In this alternative, the user could specify two constants: the mean as the 

center point (i.e., :C μ= ) and the standard deviation as the spread (i.e., :d σ= ). Then start 

values could be sampled based on this normal distribution. Compared to the three-interval-
uniform-sampling design, the primary interval (interpreted as the stronger subjective 

confidence region) could be defined as [ ],μ σ μ σ− + , while the secondary intervals 

(interpreted as the weaker subjective confidence regions) could be represented by 

( ),μ σ−∞ −  and ( ),μ σ+ +∞ . Under these conditions, the probability for sampling a start 

value from the primary interval is 2 (1;0,1) 1 0.682⋅Φ − ≈ , and consequently, the probability 

for sampling a start value from any of the two secondary intervals is 1 (1;0,1) 0.159−Φ ≈  

each ( (.; , )μ σΦ  Gaussian cumulative distribution function corresponding to (.; , )φ μ σ ). 

These probabilities, however, are the same for any specification of the primary and 

secondary intervals, that is, for any choice of the constants (center point) :C μ=  and 

(spread) :d σ= .  

In order to imitate the weight of the three-interval-uniform-sampling design 
allowing a flexible distribution of unit mass over the primary and secondary intervals, one 

could, for instance, more generally define the primary interval as [ ],z zμ σ μ σ− +  and the 

secondary intervals by ( ), zμ σ−∞ −  and ( ),zμ σ+ +∞ ; here z is any positive real number. 

The center point again is :C μ= , the spread however is given by :d zσ= . Then the 

probability for sampling a start value from the primary interval is 2 ( ;0,1) 1z⋅Φ − , while the 

probability for sampling a start value from any of the two secondary intervals is 1 ( ;0,1)z−Φ  

each. Since lim ( ;0,1) 1t t→+∞ Φ =  and 0lim ( ;0,1) 1/ 2t t→ + Φ = , we can control, by the choice 

of z, the probabilities for sampling start values from the primary and secondary intervals. 
Given any such weight distribution over the intervals, every required width (i.e., spread d) of 
the primary interval can be achieved by the choice of σ  (cf. Fig. 1).  

Moreover, what has been said for the normal distribution could also be applied 
(maybe with minor modifications) with any family of two-parameter probability distributions 
in which one parameter represents a location parameter (to place the distribution at a 
location on a parameter axis) and the other a shape parameter (to control the shape/mass 
of the distribution around that location). Finally, these alternatives, and the three-interval-
uniform-sampling approach, can be further generalized to respectively include a normal 
distribution (a two-parameter probability distribution) and a three-interval-uniform-sampling 
design for each model parameter separately. In this case, constants of the sampling designs 
are indexed by the model parameters.  

We have also outlined an analysis of the different factors varied in this paper. 
Future work may address systematic variations of other factors as well; for instance, in the 
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case of empirical functions, variations of sample size (especially for small sample sizes) and 
model complexity, or other PRAXIS settings (than maxfun). 
 
Conclusion 

The EPM strategy represents a wrapper around the function minimization routine 
PRAXIS. It effectively improves the original PRAXIS implementation by techniques that are 
applicable with other routines as well. Future work could include implementing this strategy 
for other routines in use; in particular, it would be interesting to see whether it provides 
similar advantages with, for instance, the functions for minimization in Mathematica and 
Matlab. 

 

Availability 
The C (ANSI C 99) source files, including EPM, PRAXIS, and MT19937, for double as 

well as long double versions, are freely available from the authors. Electronic mail may be 
sent to ali.uenlue@math.uni-augsburg.de or michael.kickmeier@uni-graz.at. The original 
PRAXIS source by Karl Gegenfurtner can be found at http://archives.math.utk.edu/software 
/msdos/numerical.analysis/praxis/.html (retrieved July 19, 2005).  

The original source of the MT19937 pseudorandom number generator, which is a 
component of the EPM implementation, can be found at http://www.math.sci.hiroshima-
u.ac.jp/~m-mat/MT/emt.html (retrieved July 19, 2005). The C source file for simulating data 
using the classical unrestricted 2-classes latent class model and the data set simulated for 
the analyses in this paper can also be freely obtained from the first author by electronic mail.  
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5 The double data type has a range of ± 1.798E+308 and a precision of 15 decimal places. The long double data 

type has a range of ± 1.1E+4932 and a precision of 19 decimal places. 
 
6 PRAXIS settings: prin controls the printed output from the routine; tol is the tolerance used for the default break-off 
criterion; ktm specifies the number of times the default criterion must be fulfilled to stop the minimization process; 
step is a step-size variable; scbd is a scaling variable; illc specifies whether the problem is difficult to minimize (ill 
conditioned) – PRAXIS automatically sets illc to true if it finds the problem to be ill conditioned; maxfun specifies the 
maximum number of internal calls to the objective function – a value 0 indicates no limit on the number of function 
calls. For a more detailed explanation of the PRAXIS settings, see Gegenfurtner (1992). 
 


