

Text Entities' Metrics

9

HYPERTEXT ENTITIES’ SEMANTIC
WEB-ORIENTED REENGINEERING

Cosmin TOMOZEI1
PhD Candidate, University Assistant
Mathematics and Computer Science Department
University of Bacau, Romania

E-mail: cosmin.tomozei@ub.ro

Abstract: This paper’s aim is to define the concept of Hypertext Semantic Web-Oriented
Reengineering (HSR) as a process of distributed applications development which takes into
consideration the semantic aspect in information retrieval and communication. It is virtually
possible to apply the reengineering on web applications concerned being about the efficiency
of the ideas of data structures and implementation than to mainly being troubled with the
language or syntactic point of view. This research also brings some examples of distributed
applications types, some small segments of them being mainly explained as well, in order to
make our theory strongly connected with the practical work from software companies.
It is very important that semantic approaches to be implemented while developing software
applications, mostly when reengineering is integrated in the development process, as a step for
the evolution to the next generation of web.

Key words: distributed systems; distributed applications; web semantic; reengineering; web
service; interoperability; distributed databases; dependable applications

1. Semantic Reengineering

Reengineering appears as a result of the necessity to improve the quality of the
results of one initial entity, such as software or text in order to realize new objectives which
do not differ significantly from the old ones. Reengineering also may be formalized by a
function, that may be simply called reengineering function which consists of the amount of
methodologies, methods, procedures and techniques that applied to a software entity makes
possible the transformation and integration of the new semantic principles.

This function depends of the modules that appear as variables or arguments
initially, after that reengineering appearing as a product of the initial function, which is
called development function in the initial moment (1). The development function from the
stage 1 includes the function of reengineering.

∪
1

0 1
)(

−

= =
∑ ==

n

i

t

i
ii ObjObjMoDev (1)

Text Entities' Metrics

10

The development process in this case appears as a function which depends of the
modules of the software application. Semantic aspects are not taken into consideration that
means the modules are only considered to be semantically insignificant. This point of view is
very efficient and easy but reductionist, because each module of a software application is
enhanced with semantic.

If we consider the semantic aspects of computer science and their implication in
distributed software applications, semantic web will appear as a new paradigm that implies
changes in our thinking about web development.

The product of reengineering and development function brings the possibility of
having realized the new objectives. Reengineering functions have a variable number of
arguments, each argument becoming a type of reengineering. If the semantic aspect has the
main proportion in this function, then semantic reengineering is created or the main share of
reengineering is the semantic one.

11
1

0
1)(*)arg...(argRe ObjObjMoDeveng

i i

n

i
in == ∑

−

=
∪ (2)

The above equation (2) describes synthetically the process of reengineering due to
the changing of the application’s objective. Each software product has one main objective
that appears as a sum or reunion of smallest objectives. Changing or modifying the objective
will affect the entire thinking about the existent entity.

Objective’s modification may appear as a quality driven process that will imply
reengineering in order to grow the quality of the software. It will be a lot easier to measure
the quality of each module if decided to hold the objectives and predictive results in a table
of association. We consider, for the straightforwardness’ sake that each module only has one
objective as a segment of the main objective. The realization is measured by a numeric scale
from 1 to 100, but other ways to measure it numerically are also accepted.

Table 1. The correspondence between objectives and modules

Semantic reengineering is not a standalone process. It does not exclude the other

arguments and needs them to complete the tasks. Language semantics is very important in
information exchange as well as data semantics and code semantics. The main idea is to
develop structural and architectural transformations with minimum efforts with the result of
restructuring the entities’ architecture, design and source code that will bring evolution in the
meaning, in contrast with the syntactic point of view. We would like to show that syntax must
subordinate itself to semantics, because the meaning is the most important. Syntactic
modification is only a way for bringing evolution in semantics.

Operational semantics consists of rigorousness of functions, procedures and
programs that implement mathematic algorithms with mathematical meaning.

Module
 Objective

 Objective 1

Objective 2

………….

Objective n

Module 1 80 0 2

Module 2 15 76 0

…………

Module n 5 14 55

Realization 100 90 57

Text Entities' Metrics

11

Reengineering in operational semantics comes as a transformation or metamorphosis of
mathematic formulae in source code.

Operational semantics is stalwartly related with the transition of a software system.
In [Plotkin81]2 system transition is described as being formed by a set of configurations and a

binary relation which brings the system from an initial configuration (γ) to a final one (γ 1).
We consider each configuration related with a meaning which is not significantly different
from the previous one. Transformation from an initial to a final phase that brings a
qualitative growth in the meaning and a better realization of the objectives is defined as
semantic reengineering.

The process of semantic reengineering is finite, deterministic, value orientated and
progressive. The following elements will be more explanative [TOVA08] and [IVPOTO05]:

• finiteness which means that reengineering is bounded limited and will be finalized
after realizing all the transformations.

• determinism, due to the necessity of doing a number of iterations until the process is
finalized and the meaning of the software faced a new qualitative upward;

• continuity during the development cycle;
• flexibility regarding the development platforms;
• appropriate management which guides the development team in the process.

Denotational semantics is the approach in which the programming languages
meanings are used by constructing mathematical objects that describes them. Denotational
semantics is very important as well, being related with the states, in which commands are
partial functions of the domains of states, denotation of data types and datta structures, such
as graphs, trees or vectors.

Denotational semantics of concurrency introduced new models for concurrent
computation such as the actor model or Petri nets. It is as well studied from the denotational
point of view the sequentiality of programs and source to source translation. For example if
we consider the following web application functions it may be possible to use semantic
reengineering and denotational semantics to translate it from one language to another.

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles Button1.Click
 Dim strcon As String = "Data Source=ASE-EY5776NZ4X6\SQLEXPRESS;Initial Catalog=seminarii;Integrated
Security=True"
 Dim scoma As String = "select * from firme"
 Dim sconn As SqlConnection = New SqlConnection(strcon)
 Dim ds As DataSet = New DataSet()
 sconn.ConnectionString = strcon
 Dim sq1 As SqlCommand = New SqlCommand()
 sq1.CommandText = scoma
 Dim sdadpt As SqlDataAdapter = New SqlDataAdapter(scoma, sconn)
 sdadpt.Fill(ds, "sursa")
 For Each dr As DataRow In ds.Tables("sursa").Rows
 If Convert.ToInt32(dr("id")) = 1 Then
 TextBox1.Text = Convert.ToString(dr("id_firme"))
 TextBox1.Text + Convert.ToString(dr("den_firme"))

 End If
 Next
 MsgBox("Salut")
 End Sub

Text Entities' Metrics

12

An experienced programmer may as well transform it for reducing the number of
code lines and the keeping the same functionalities. Mathematical semantic translation may
be used to keep the functions and the objectives of the web application correct and good.

protected void Button3_Click(object sender, EventArgs e)
 {
 string strconn =
System.Configuration.ConfigurationManager.ConnectionStrings["string_config_seminar"].ConnectionString;
 SqlConnection scon = new SqlConnection(strconn);
 string str="select * from firme";
 SqlCommand scm = new SqlCommand(str, scon);
 SqlDataAdapter sadapt = new SqlDataAdapter();
 sadapt.SelectCommand = scm;
 DataSet ods = new DataSet();
 sadapt.Fill(ods,"tabel1");
 foreach (DataRow dr in ods.Tables["tabel1"].Rows)
 {
 TextBox2.Text += dr["id_firme"];
 TextBox2.Text += dr["den_firme"];

 }
 }

Axiomatic semantics is an approach that provides rigorousness and correctness to
computer programs and is based on mathematical logic. Operators from programming
languages are deeply connected with mathematical logic. If we consider as an example XOR,
Logical AND, Logical OR we will see how mathematical logic affect the way of representing
reality by computer programs. Axiomatic semantics has strong associations with Hoare Logic
[www1], having as central element a formalism which is called Hoare Triple {P} C {Q},
where P and Q are assertions and Q is the command. It describes how a software code is
changing the state of computation.

Web orientation of software applications manages to make transformations in
software code and specifications from both directions, syntactic and semantic. Web services,
which allow communication to take on between software programs by SOAP [www2] use
web methods as traditional software applications use normal methods. Reengineering will
adapt the piece of code offering it the possibility to more general and interoperable.
Transformation by reengineering produces the following piece of code as web method with
the result of an XML Dataset, understood by software applications which communicate over
the Internet. The clients will retrieve information from the relational database just by
referring and invoking web methods.

 [WebMethod (Description ="Citeste tot si afiseaza xml,Cosmin Tomozei")]
 public System.Data.DataSet citeste_tot()
 {

SqlConnection scon = new
SqlConnection(ConfigurationManager.ConnectionStrings["conn1"].ConnectionString);

 scon.Open();
string st = @"SELECT intalnire.dataintalnire, intalnire.ora,intalnire.durata,intalnire.linki,
perscon.nume + ' ' + perscon.prenume AS Invitat, Institutie.deninstitutie, utilizator.prenume + ' ' +
utilizator.nume AS Participant, tara.codtara,Localitate.denloc,Locuri.denl FROM intalnire INNER JOIN
perscon ON intalnire.persconid = perscon.persconid INNER JOIN Institutie ON intalnire.codinstitutie =
Institutie.codinstitutie INNER JOIN utilizator ON intalnire.utid = utilizator.utid;

 SqlDataAdapter adpt1 = new SqlDataAdapter();
 SqlCommand scmd1 = new SqlCommand(st, scon);

Text Entities' Metrics

13

 System.Data.DataSet ods1 = new System.Data.DataSet();
 adpt1.SelectCommand = scmd1;
 adpt1.Fill(ods1, "tabela_noua1");
 return ods1;
 }

2. Semantics in Distributed Web Applications

Resource description framework (RDF) is a language which allows information to be
represented and exchanged on the web. Semantic web appears as a new challenge for web
developers to create applications that share data across any barriers, in a more efficient way.

RDF is based on the graph data model [www3] that uses triples formed by subject,
predicate and model and represents a kind of relation between things. Efficiency appears in
consequence when metadata is widely used by web applications during communication.

The syntax of this new language uses the XML syntax because is widely used in
machine to machine communication over the Web. Another important aspect of the XML
language is that is also human readable and understandable with very little effort. XML
provides to hypertext entities more power and capacity of being machine readable.

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: length
<?xml version="1.0" encoding="utf-8"?>
<soap12:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soap12="http://www.w3.org/2003/05/soap-envelope">
 <soap12:Body>
 <citeste_tot1Response xmlns="urn:ub.ro/seminarii">
 <citeste_tot1Result>
 <xsd:schema>schema</xsd:schema>xml</citeste_tot1Result>
 </citeste_tot1Response>
 </soap12:Body>
</soap12:Envelope>

The result after invoking the web method consists of an XML machine to machine

communication file. The file serializes the dataset returned by the web method, which
contains data extracted from the distributed databases, or other information that is necessary
in our development process. Below is just a piece of information regarding costumers and
meetings from an SQL Server Database.

<NewDataSet>
<tabela_noua1 diffgr:id="tabela_noua11" msdata:rowOrder="0">

 <dataintalnire>25/11/2008</dataintalnire>
 <ora>12:20</ora>

<Invitat>Cosmin Tomozei</Invitat>
<deninstitutie>CCIT</deninstitutie>
<Participant>Popescu Pop</Participant>
<codtara>196</codtara>
<denloc>Johannesbourg</denloc>
<denl>str k 1</denl>

</tabela_noua1>
<tabela_noua1 diffgr:id="tabela_noua12" msdata:rowOrder="1">

<dataintalnire>30/11/2008</dataintalnire>

Text Entities' Metrics

14

<ora>12:20</ora>
<Invitat>Simona Varlan</Invitat>
<deninstitutie>CCIT</deninstitutie>
<Participant>Popescu Pop</Participant>
<codtara>196</codtara>
<denloc>Johannesbourg</denloc>
<denl>str k 1</denl>
</tabela_noua1>

</NewDataSet>

RDF has the possibility of cooperating with the relational model in distributed web

applications that have relational SQL or Oracle Databases, many specialists claiming that a
relational view of the Semantic Web [NEWM07] can be developed due to the efficiency,
openness and robustness of the relational model. We deeply agree with that idea and
consider that the relational model as well as the object oriented model can be used
efficiently in Semantic Web.

SPARQL is the query language for RDF, which allows retrieval of information from
the graph model and has the same relational algebra query operations as in the relational
model, such as projection, selection or join and also RDF graphs structure may be easily
transformed in relational tables as vice versa. SPARQL [NEWM07] can be seen as an
extension of the relational model, as we also believe.

Administration of distributed applications [EBER06] has evolved, implying semantic
management. Ontology has to be implemented as an important component of semantic web
distributed applications. Ontology represents a set of attributes or characteristics that are in
a specific domain, including the relations between them. Instances (objects), classes,
assertions rules and also events are components of ontology. They can be merged,
generalized and also inheritance can take place in order to create an ontology which is more
specific for a particular objective of a semantic web application. Ontologies formalize
concepts and relations between concepts similarly to the class diagram from the UML
[EBER06]. In this case they may be seen as a source for interoperability, which is an
important metric for distributed applications, and make them easier to integrate in
distributed systems. Due to the formalization based on computational logics they are clear
and very easy to understand, not being ambiguous and unformalized.

Taxonomy contributes as a science of classifications to create ontology hierarchies
and ordinate them due to our interests and their semantics. OWL is the language. The
following example points out reengineering results of transformation from LISP to OWL, both
languages being semantic web related.

(make-class student
(agent (computer_science_student))
(is-a (value computer_science_faculty)))
(instrument (software))
(location (Computer_Lab_Corp_C_Universitatea_Bacau)))

The entity student now can be modeled thanks to reengineering in OWL [BAKU05],

showing how to transform the description of an entity from the Common LISP dialect to
OWL.

Text Entities' Metrics

15

<owl:Class rdf:about=“#student”>

<rdfs:subClassOf rdf:resource=“#Faculty”/>
<owl:onProperty rdf:resource=“#Computer Science”/>

<owl:Class rdf:about=“#Corp_C_Universitatea_Bacau”/>
</owl:Class>
<owl:ObjectProperty rdf:ID="Descriere_student">
 <rdfs:domain rdf:resource="#Student" />
 <rdfs:range rdf:resource="#Media" />
</owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="Bursier">
 <rdfs:subPropertyOf rdf:resource="#Are_Bursa" />
 <rdfs:range rdf:resource="#Bursa" />
</owl:ObjectProperty>

</owl:Class>

The reason web services are different in comparison with other kind of web

applications is because while HTML pages or web forms from ASP.Net web applications are
dedicated to human final users, web services are to be understood by remote machines
which refer them over the distributed system. Companies that are dealing with advertising
over the Internet or E-commerce provide their own web services to other companies or to
final users or just developers to access their information. The main idea is that web services
have methods that access information from different data sources and serialize it in XML. The
web methods are to be invoked remotely in the distributed system, network or Internet. Web
services are the perfect solution for a web developer to build easily distributed applications,
having in consideration the semantic prevalence, access data in short time and low costs,
productiveness being in this case the suited word for describing this activity. As semantic web
is, web services are platform independent, the client having the possibility to get and process
XML data independently of his type, such as hardware platform, operating system, etc.

Grid computing may involve web services as well. In [WILEY04] grid computing is
defined as connecting supercomputers into metacomputers that are remotely controlled. The
greed reunites remotely placed computers for serving the scientific community in a more
cohesive way. However, grid computing offers the possibility to have access to diverse
resources which are not available from a single machine or a single kind of platform. Grid
computing and cluster computing use distributed software reengineering in order to realize
new objectives, to add new workstations or servers into the distributed system, to make
possible cooperation and collaborative work within distributed systems so as to contain
heterogeneous software platforms.

Languages such as Common LISP, OWL, HTML and XML as well as object oriented
languages such as VisualC#.NET, Visual C++.NET or Java being integrated in distributed
web applications, frameworks and developer kits in order to resolve problems of
heterogeneity and distributiveness.

This paper’s aim is not only to describe technologies, concepts already well known
in the distributed application development area but also to reflect semantic evolution,
metrics of semantic reengineering and the importance of software reengineering in the
semantic approach. The next generation of web is for sure semantically oriented. The syntax
is not the final objective, but just a way in achieving semantic efficiency and clarity of the
ideas. Transformation and redefinition of data structures play an important role in this
scenario as well as key factors of distributed applications reengineering.

Text Entities' Metrics

16

3. Distributed Web Applications Semantic Reengineering Metrics

Reengineering becomes a must in distributed applications development, due to the
efficiency it brings in the development cycle. Software companies or just research
laboratories do not have the physical resources or time to start projects from scratch over
and over again. Even if they had, it would have been inefficient and absolutely chaotic to
abandon good work which has been already done with money and time spending and not to
reuse it in the following projects. Experience and expertise have already been achieved by
the specific situations in which the development team worked in the past in order to realize
the objectives from the past. This expertise has to be implemented in the future projects,
experience being important for them as well.

In [TOVA08] we described code transformation as being an important component
of software reengineering while having in consideration aspects related to security,
concurrency, openness, scalability, dependability or transparency. For distributed systems, as
well as for distributed applications it is essential to follow this metrics as important
approaches of software quality. This metrics must convey in which proportion, the software
quality characteristics are realized by software developers. First of all, as a premise for
reengineering the entity that would be subjected to it must have passed quality certification.
Having passed quality certification time before guarantees a good premise for a successful
reengineering process.

Concurrency is one of the most important distributed application’s metrics.
Concurrency is defined as a property of software processes to be executed in the same time,
with the possibility that each process (thread) communicates with the others. In distributed
applications, users may interact simultaneously with parts or domains of the application.
When talking about distributed databases, data may be accessed from many physical
locations. Software applications have to consent maximum concurrency with maximum
safety. The increasing of concurrency should not affect the functionalities of the application.
The database resources should be accessible to a big number of users that can be
considered to be infinite in formalization.

∞=)(lim iAPPNrUsr ,where NrUsr = ∑
i

iUsr (3)

Shall we consider the rights each user has when accessing the software application,
distinctions have to be made, depending of the category in which the user belongs. In this
case, the formula has to be transformed in order to reflect the user’s role about the
application.

∑∑
= =

=
n

i

m

j
ijUsrNrUsr

1 1
, (4)

where the index j represents the category and i the index of the user from the category.
NrUsr in this case have to be maximal and considered infinite as well.

While doing reengineering to the distributed application, each category of users
should considered, and attention should be focused on the rights each category of users
have. Optimization of user accounts is very important in distributed applications
development. Categories and rights have a semantic background for the software
developers. The associations between users and rights have semantic intelligence.

The openness characteristic is very common for distributed systems and it is also
compulsory for a good and maintainable distributed application. Apart from autonomous

Text Entities' Metrics

17

sequential software programs that cannot be modified nor may be configuration updatable
during their compilation and execution, distributed systems and applications be updated
during the execution nods or procedures being added, modified or deleted. A distributed
application may change it’s configuration during the lifecycle. The indicator Icop (openness
indicator) reflects the number of actualization procedures during a period of time. It is

advisable to compare these indicators from each two periods of time 1, +ii tt and to build time

series with them.

∑∑∑
===

++=
r

k
k

t

j
j

n

i
i DelUpdInsIcop

111

 (5)

If it is desired to make comparisons between the numbers of actualizations from
two periods of time it is very simple and efficient just forming a ratio index.

0

1

Icop
IcopIncop = (6)

The openness of the application is in direct proportion with the Icop indicator.
Every chain of transformations and modifications creates the reengineering of the distributed
application. It is very important to have an open distributed application in order to make
reengineering, but what is the most important factor in building reliable distributed
applications is that the system works while transformations are being made.

Openness is important for the semantic transformation. An open application can be
subjected to software reengineering easily by adding new components with new meanings
and objectives.

Transparency and fault tolerance means that the user must not be restricted to
use the application and the main functions of the system must not be affected if there are
some components that do not work. Transparency means that from the user’s point of view,
the software application appears as a single non divided unit which helps him, without
showing it’s distributiveness. It is not important as well as not recommended to show the
users the fragments or clusters of the software system. It will not be accessible to see the
fragment or the cluster from which the information brought by the query resides, whether is
replicated or subjected to concurrency while using it. Committing or finalizing transactions
in distributed application is also done independently and transparently. In this case,
reengineering may be more difficult in comparison with the traditional, non distributed
applications because the development team must see the image behind the transparent
image, as the back-side one.

The formalism that represents a grid from a distributed software application may
be referred as :

∪
n

j
jii FragGrid

0=

= (7)

as a reunion between the j indexed fragments of software or database fragments from the
network. If we have replication in our distributed system, we must put one condition that will
optimize the access to one replica and that the fragments should be distinct. We must
evaluate each fragment or replica and see if there are any updates and modifications.

The whole image of the application will appear transparently and can be described
by the following formalism as TrImage or transparent image.

∪ ∪ ∪
m

i

n

j

m

i
iji GridFragTrimage

0 0 0= = =

== (8)

Text Entities' Metrics

18

Transparency makes possible semantic constancy not depending of the deficient
functionality of some modules of the system. Architectural reengineering may be also
realized without notifying the users voluntarily or involuntarily by malfunctions or stops in the
system’s operation.

4. Conclusions

This paper described software reengineering in distributed applications on the
subject of the hypertext entities semantic perspective. Semantic reengineering is very
important and may be as well considered as the main component of software reengineering.
Particular metrics have been shown regarding semantic reengineering and distributed
applications. In addition to the text entities reengineering, development of distributed
applications presumes technological implementations and platform dependence. However,
the openness of distributed systems involves autonomy and context independence.

Semantic reengineering appears as an argument of the reengineering function, this
concept being implemented and developed by the author.

As the other types of reengineering, semantic reengineering is also related with the
renewing of the application’s objectives, each objective being quantitatively measured as
well as about the quality of the results.

References

1. Barzdins, G., Gruzitis, N. and Kudins, R. Re-engineering OntoSem Ontology Towards OWL

DL Compliance, Knowledge-Based Software Engineering, in ”Proceedings of the
Seventh Joint Conference on Knowledge-Based Software Engineering”

2. Eberhart, A. Semantic Management of Distributed Web Applications, IEEE DISTRIBUTED
SYSTEMS ONLINE, 1541-4922, 2006, IEEE Computer Society Vol. 7, No. 5; May 2006

3. Ivan, I., Popa, M. and Tomozei, C. Reingineria Entitatilor Text, Revista Romana de Informatica
si Automatica, vol. 15, no. 2, 2005

4. Newman, A. A Relational View of the Semantic Web, XML.COM, March 14, 2007
5. Plotikin, G. D. A Structural Approach to Operational Semantics, Computer Science Dept.,

Aarhus University, 1981
6. Tomozei, C. and Varlan, S. Distributed Applications Reengineering Metrics, Studii si

Cercetari Stiintifice, no. 17, Seria Matematica, Universitatea din Bacau
7. Reilly, E. D. Concise Encyclopedia of Computer Science, Wiley, 2004
8. http://www.w3.org/TR/owl-features/ 07.03.2008
9. http://www.w3.org/2001/sw/ 07.03.2008
10. http://dsonline.computer.org/portal/site/dsonline/index.jsp

1 Cosmin Tomozei is Universtiy Assistant at Mathematics and Computer Science Department from Faculty of
Sciences of the University of Bacau. He PhD candidate from October 2007 at Economic Informatics Department
from University of Economics, Bucharest. He holds an Master in Science - Databases- Business Support from
University of Economics, Bucharest. He graduated in Economic Informatics at Faculty of Economic Cybernetics,
Statistics and Informatics in 2006. His main research areas are: - object oriented programming; - functional
programming; - software reengineering; - distributed applications.

2 Codification of references:

[BAKU05] Barzdins, G., Gruzitis, N. and Kudins, R. Re-engineering OntoSem Ontology Towards
OWL DL Compliance, Knowledge-Based Software Engineering, in ”Proceedings of the
Seventh Joint Conference on Knowledge-Based Software Engineering”

[EBER06] Eberhart, A. Semantic Management of Distributed Web Applications, IEEE DISTRIBUTED
SYSTEMS ONLINE, 1541-4922, 2006, IEEE Computer Society Vol. 7, No. 5; May 2006

Text Entities' Metrics

19

[IVPOTO05] Ivan, I., Popa, M. and Tomozei, C. Reingineria Entitatilor Text, Revista Romana de

Informatica si Automatica, vol. 15, no. 2, 2005

[NEWM07] Newman, A. A Relational View of the Semantic Web, XML.COM, March 14, 2007

[PLOTKIN81] Plotikin, G. D. A Structural Approach to Operational Semantics, Computer Science
Dept., Aarhus University, 1981

[TOVA08] Tomozei, C. and Varlan, S. Distributed Applications Reengineering Metrics, Studii si
Cercetari Stiintifice, no. 17, Seria Matematica, Universitatea din Bacau

[WILEY04] Reilly, E. D. Concise Encyclopedia of Computer Science, Wiley, 2004

[www1] http://www.w3.org/TR/owl-features/ 07.03.2008

[www2] http://www.w3.org/2001/sw/ 07.03.2008

[www3] http://dsonline.computer.org/portal/site/dsonline/index.jsp

