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Abstract: In this paper we will present the requirements for C# batch program development.  
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1. C# program batch definition 
 

In order to analyze C# programs it is necessary to build a representative program 
batch. 

The size of the batch, expressed as number of programs, is based on probability, 
which guarantees that the results given by the programs in the batch are correct and 
represent the type of programs of which they are a part of, based on the result dispersion 
and on the error margin.  

For a 95% probability, a variance of 0.25 and a maximum error of 3% the batch 
must contain 1067 programs. The result is based on the formula used to determine sample 
volume, in the case of extraction with return [ISAIC99]5: 
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where: 
z2 –   the Gauss-Laplace repartition quantum for the requested probability level (for P-   
        95%, z=1,96); 

2σ -  the population variance; 
2
xΔ  - the error margin. 

 
The programs must be characterized by: 

- homogeneity, the program length must not differ significantly; 
- must be developed using C#; 
- must be syntactically correct; 
- the degree of difficulty must be similar; 
- must not contain calls to extern libraries or modules. 

 
To obtain the batch the following procedure was applied: 

 
A collectivity of 50 programmers is considered. 
They have significantly similar levels of experience and qualification. 
The proposed issues to be solved have restrictions regarding: 

- the type of the procedures; 
- the nature of obtained results; 
- the data structures used; 
- the complexity of the software product; 
- type of the results returned by the procedures; 
- the parameter number for each procedure; 
- the types of parameters used by each procedure; 
- the complexity of each procedure; 
- the number and type of variables that may be used inside the procedures. 

 
The programmers have tested the programs on 100 data sets. 
The associated tree like structure was elaborated, and the tests were meant to 

cover the largest possible scenario number. 
 
The programmers made a series of recordings regarding: 

- the time spent coding the program; 
- number of errors; 
- number of runs; 
- running time; 
- number of runs with errors; 
- number of runs which produced correct results; 
- number of runs which produced flawed results, 

which they freely declared. 
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2. Program quality indicator system 
 

There are numerous indicators. The ones for which data is automatically collected 
and are automatically computed, having input data a number of files which contain in fact 
programs are called operational, like in figure 1: 

 

 
Figure1. Automatic indicator computing. 

 
 

For program P1 in which over 80% of the components represent routine activity, 
having 10000 lines of code, the following activities have been unrolled: 

- specification elaboration: 2 days; 
- product analysis: 2 days; 
- product design: 2 days; 
- product implementation: 8 days; 
- product testing: 3 days; 
- product deployment: 3 days, 

resulting in a total of 20 days. 
This indicator is influenced by: 

- personnel experience, because an experienced personnel will foresee 
implementation errors, and will decrease the needed time period to implement 
the software product; 

- the complexity, which leads to increasing the time allocated to create the 
software product; medium complexity programs are preferred, as they do not 
solicit personnel and computing resources; 

- personnel qualification influences the quality and the time needed to complete 
the development of the software product; 

- reused components greatly reduce the time allocated to developing the software 
product by obtaining them using program libraries;  

- the routine of unrolled activities affect personnel attention to details; the 
reallocation of personnel on different types of programs is preferred such that 
the state of indifference is avoided.  

 
Source code lines and the length of the file are indicators that apply to programs 

that have a large number of source code lines.  
 

 
Programs 

Indicator 
computing 
software 

 
Result list 
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Complexity is a quality indicator for software products; it establishes the program 
level of difficulty, expressed as number of source code lines, number of instructions used, 
and number of repetitive cycles. 

The operands n1 and n2 are considered. The complexity is determined using the 
formula: 

 
C = n1 lg n1 + n2 lg n2 

 

 
There is software that automatically receives programs sources and identifies the 

operators, +, -, *, /, %, <, >,  !, &&, ||, <<, >>, ==, it counts them and computes their 
complexity. 

Time of completion represents the number of days or hours needed to go through 
the stages of the software development cycle. 

Program length is given as a number of source code lines. 
The programmers are instructed to realize the instruction alignment in a convenient 

way. 
The coding of the programs is made depending on the personal way of aligning 

instructions, specific to each programmer. The C++ language does not enforce any 
restrictions regarding the arrangement of instructions in the page. 
 

The following instructions are considered: 
 
int a,b,c; 
a = b + c; 
 

There are several ways of writing these instructions: 
- all instructions on one line: int a,b,c; a = b + c; 
- each operand and operator in a new line:  
int 
a, 
b, 
c; 
a 
= 
b 
+ 
c; 
- several combinations that imply the methods stated above.  
 

In a structural way, aligning instructions on source code lines must respect several 
rules: 
- a procedure is called with its parameters on one line of code; 
- the repetitive cycles are written on several lines of code to clearly identify the running 

conditions, the operations inside the cycle and the exit conditions from the respective 
cycle; 

- simple instructions are written on one source line; 
- the simple conditional instructions are written on several lines to determine the 

condition to respect, the body that is executed if the condition is true, and the block that 
is executed if the condition is false; 
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- the alignment must be done in such a way that the program will be well structured. 
To obtain a better view of the program or program block content, each new 

instruction must be tabbed right compared to the previous instruction if it depends on it. 
The procedure to determine the maximum of three integer numbers is considered. 

It is written in several different readings considering instruction alignment. 
 

Reading R1 
procedure maxim(int a, int b, int c) 
{ 
int nr; 
if (a>b) nr:= a;  
else nr:= b; 
if (nr<c) nr:=c; 
printf(“%d”, nr); 
} 
 

Reading R2 
procedure maxim 
(int a, int b, int c) 
{ 
int nr; 
if (a>b) 
 nr:= a;  
else  
nr:= b; 
if (nr<c)  
nr:=c; 
printf(“%d”, nr); 
} 
 

Reading R3 
procedure  
maxim 
(int a, int b, int c) 
{ 
int nr; 
if  
(a>b) 
 nr:= a;  
else 
 nr:= b; 
if 
 (nr<c)  
nr:=c; 
printf(“%d”, nr); 
} 
 

In table 1, centralization is made for the number of specific source lines of each 
reading of the procedure:  
Table 1. Procedure sizing 

Reading Size 
R1 8 
R2 12 
R3 15 

 
The designated procedure to compute the maximum has a number of 8 source 

code lines. The length of the file is influenced by the arrangement of lines in blocks method. 
Other traits of the software that is processed to give information regarding the 

indicators are: 
- integrability expresses the ability of the software product to be called and integrated as 

a component module in a complex software product; Integrability assumes the 
uniformity of naming  used in each module, for naming the variables as well as naming 
created functions,  function parameterization on the basis of new frame formats 
conveyed upon during design, returning results that can serve as input in another 
module and processing results obtained from other modules; 

- interoperability represents the capacity of the software product to couple with other 
products; this attribute allows the reuse of some programs to build complex 
applications; the coupling is assured directly or using interfaces; 

- orthogonality is a quality characteristic which establishes the degree of resemblance 
between two or more software products; orthogonality represents the base of defining 
the software reuse indicator and determines a program’s level of orthogonality. 

There are quality characteristics that are highlighted by the behavior of the software 
product in exploitation. 

Viability is perceived as a capacity metric of the software product to function 
correctly in all given conditions from the beginning. There are quantitative subscriptions of 
viability, expressed through the probability that a software product to fulfill its functions with 
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certain performances and errors in a time interval and given exploitation conditions, as well 
as there are qualitative subscriptions which look at viability as a capacity of the software 
product. The ISO/IEC 9126 standard defines viability as a set of attributes that are based on 
the capability of the software product to maintain its level of performance in an established 
time period and conditions. The viability limits of a software product are caused by errors in 
the requirements definition, design and implementation stages. The problems caused by 
these errors depend on the conditions in which the software product is used. Corresponding 
to the software product life cycle, there is a projected or provisioned viability, on 
experimental viability and an operational viability (at the beneficiary). Viability defines the 
capacity of a software product to fulfill the functional parameters covering the whole use 
interval. 

Maintenance is a specific process of software products meant to function over a 
large time interval, meaning longer then three years. In time, because of the technological 
processes evolution, law changes, structural collectivity modifications, the software products 
must answer the real requirements of users in order to be chosen.  

A software product is maintainable if it allows a quick and easy actualization such 
that it can be used in the best conditions. A product that respects the maintenance criterions 
has a sufficiently long use period to amortize the production costs. Exceeding the cost 
recovery period and ensuring that the software product is viable contributes to the increase 
of the product’s efficiency. 

Portability is defined as a set of attributes based on the facility that software 
products should have, to transfer from one environment to another. The environment is 
represented by the hardware and/or software context in the organizational framework. 
Programs are said to be portable, not only if they are implemented on several computers 
directly, without any modifications, but also if the execution on other types of computer 
systems needs little modification and a reduced programming effort compared to 
redeveloping the program. Another aspect of this characteristic is tied to the portability of 
compilers, to different video and audio facilities offered by the computing systems and used 
by the application programs. A portable product is used easily in the organization, in 
organization branches, in departments; this relives the organization of the effort to buy new 
software programs. 

Correctness gives the degree in which a software product satisfies or not the 
specifications of the problem that needs to be solved. A program is correct if for the input 
data that satisfies the specification of the problem, the obtained results are correct. The 
correctness of a software product represents the product’s capacity to unroll a group of 
operations necessary for supplying results used in the analysis and prognosis process 
through respecting the set of norms at implementation time. The correctness of the program 
does not refer only to its capacity to respect implemented rules to obtain results, but also to 
the implementation of correct norms that supply correct results. 

There are estimative and effective quality levels. The estimative quality levels are 
the ones computed and set at application design time. They are based on the formulas that 
are implemented, repetitive cycles used and the quantity of memory needed to run the 
software product. The effective levels are the ones obtained after running the software 
product and making modifications to the source code in order to reach the objectives that 
the application was developed to fulfill.  Between the estimative and effective levels there are 
some differences caused by the necessity of adapting the software product to the 
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requirements, the improvement of algorithm efficiency, and the appearance of new 
objectives. The quality indicators that characterize the software product are validated if the 
differences between the estimated and effective values are acceptable. 
 

3. Software structure 
 

The application developed to analyze the source file quality is available on the 
internet, being freeware. 

The user inputs C# source files, which are tested with the help of the application. 
The values returned by the application correspond to applying the quality indicators 

on the source files inputted by the users.  
The software product includes: 

- the human – computer interface; 
- the computing modules; 
- the  modules used to validate the data inputted by the user; 
- access authentication; 
- the problem definition module; 
- program storage base for each user. 

To ensure user created product testing, a C# program batch is created, which 
allows the following operations: 

- visualization of stored programs 
- the selection of a program product from the batch; 
- indicator computation for the batch, and individually for each program product ; 
- creation of back-up copies and ensures their processing, to avoid the loss of basic 

information. 
The program batch is meant to centralize the existing tendencies in the tested 

programs, to identify programming and logic errors, and to create code sequences used 
frequently by programmers. 
 

4. Program classes 
 

The program batch allows the computation of a multitude of indicators. 
In [MACES85] the importance coefficients for characteristics are presented. The 

importance coefficients are aggregated in a characteristic model based on the 
correspondence between the weight of a characteristic and the value of the indicator of that 
specific characteristic, as it results from table 2. 
 
Table 2. The correspondence between quality characteristics and their importance 

     Characteristic 
 
Program 

C1 C2 ... Cj ... Cm 

P1       
P2       
...       
Pi    Xij   
...       
Pn       

Weights p1 p2 ... pj ... pm 
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Where pj is the quality characteristic’s importance weight Cj and 1
m

1i
ip =∑

=
. 

The quality characteristic importance coefficients are used to determine the 
program quality aggregated indicator using the formula: 

∑
=

=
m

1i
ijji xpP *)(IA = IAi 

The determination of the aggregated program quality indicator underlines the basis 
of grouping the programs into quality classes. 

The grouping into classes is done by establishing the number of classes and their 
size. Choosing the number of classes requires the knowledge of the program quality values 
variation, the elaboration of several class patterns until the optimum solution of the 
phenomena is reached. 

To determine the quality class existence intervals the minim and maximum value of 
the quality values needs to be established. The difference between the two values is the 
amplitude, A. 

To establish the quality classes, their number must be determined. It is determined 
using the Sturges rule: 

N = 1+3,322 * log10 n 
where: 
n  – the number of programs for which the quality classes are determined; 
N – the number of quality classes. 

Based on the number of classes the size of each class, d, is determined according to 
the formula: 

d =  A / N 
After the number of quality classes is computed, it is delimited by lower and upper 

bounds. 
The bounds are determined in the following manner:  

- the upper bound of each interval, will take the value of the lower bound of the following 
interval, this way repetitive bound intervals are obtained; 

- the upper and lower bounds of the intervals are differenced by one unit; 
The stages that must be covered to establish the program quality classes are the 

following: 
S1: individual quality characteristic importance weight allocation 
S2: determination of the program quality aggregated indicator; 
S3: building the program’s quality classes; 

The covering of the above stages ensures the delimitation of program quality on 
value intervals, quality classes contributing to the grouping of programs considering the 
aggregated quality level. 
 

5. Establishing the belonging of a program to a quality class 
 

Program quality estimation imposes the creation of value delimited quality classes 
of quality indicators. The belonging of a program to a certain quality class supposes the 
computation of quality indicators applied to the respective program and the identification of 
the bounds between which the program must fit. 
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The analyzed programs must respect a series of frame conditions which certify their 
belonging to one of the quality classes: 
- to be written in C#; 
- to allow data input; 
- to allow data visualization; 
- not to contain syntax errors, or interpretation errors; 
- to validate processed data. 

The quality level for the m characteristics must not differ significantly compared to 
the average level. 

The frame conditions have the role of limiting programs that are the subject of 
analysis. Program analysis is realized based in quality characteristics computed for every 
program. 

Program quality is composed of a set of quality characteristics which are divided in: 
- technical and usage characteristics; 
- economical characteristics; 
- social characteristics. 

 
Quality characteristics are imposed not only by the client, but by the need that the 

software product runs efficiently, as well. Based on the quality characteristics the quality cost 
in determined, respectively the implied quality characteristics implementation cost and the 
cost of the quality characteristics requested by the client. 

The quality cost is determined based on the formula: 

CCcxpP i

m

1i
jijji **)(CC ==∑

=
 

where: 
m – number of the quality characteristics; 
cj – the quality cost of characteristic j; 
xij – quality value of characteristic Cj for program Pi. 

 
The belonging of a program to a quality class is established after the building the 

quality classes, considering the quality aggregated value of each program. 
After the quality classes and their bounds are agreed upon, the programs and their 

belonging to quality classes are identified. 
The quality characteristics dependency structure is presented in [IEEE94]: 

- maintainability defines the degree of effort to repair, maintain or improve a product  
– C1; 

- correctness, represents the degree of effort necessary to correct errors and meet the 
user formulated requirements – C2; 

- modifiability, describes the effort to improve or modify the functions of the software 
product – C3; 

- testability, measures the effort needed to test the software product – C4. 
 
Table 3 presents the results of applying the above quality characteristics to a 

sample of 40 programs and the weight of the quality characteristics in the quality system 
aggregation: 
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Table 3. The level of quality characteristics 
Characteristic 
 
Program 

C1 C2 C3 C4 IA Characteristic 
 
Program 

C1 C2 C3 C4 IA 

P1 0.8 0.5 0.25 0.55 0.5675 P21 0.6 0.68 0.55 0.84 0.6845 

P2 0.5 0.6 0.69 0.78 0.6375 P22 0.7 0.77 0.77 0.82 0.764 

P3 0.6 0.1 0.65 0.76 0.5305 P23 0.9 0.87 0.78 0.87 0.8655 

P4 0.3 0.98 0.89 0.92 0.7445 P24 0.7 0.85 0.91 0.92 0.835 

P5 0.8 0.32 0.82 0.9 0.713 P25 0.97 0.81 0.82 0.9 0.8865 

P6 0.9 0.65 0.34 0.74 0.7055 P26 0.69 0.82 0.86 0.74 0.763 

P7 0.12 0.45 0.78 0.58 0.4395 P27 0.18 0.88 0.8 0.84 0.646 

P8 0.54 0.89 0.79 0.64 0.695 P28 0.76 0.89 0.79 0.82 0.815 

P9 0.69 0.32 0.75 0.15 0.4445 P29 0.39 0.81 0.75 0.88 0.696 

P10 0.57 0.91 0.76 0.77 0.7435 P30 0.57 0.91 0.76 0.77 0.7435 

P11 0.22 0.52 0.58 0.88 0.547 P31 0.77 0.75 0.82 0.88 0.8055 

P12 0.68 0.23 0.32 0.89 0.5765 P32 0.65 0.76 0.88 0.89 0.784 

P13 0.21 0.17 0.89 0.77 0.47 P33 0.74 0.73 0.89 0.77 0.769 

P14 0.88 0.75 0.77 0.61 0.75 P34 0.88 0.75 0.77 0.91 0.84 

P15 0.37 0.85 0.68 0.58 0.5995 P35 0.85 0.85 0.83 0.92 0.868 

P16 0.89 0.83 0.69 0.46 0.716 P36 0.89 0.83 0.84 0.93 0.8795 

P17 0.49 0.27 0.54 0.91 0.5685 P37 0.85 0.77 0.87 0.91 0.851 

P18 0.61 0.84 0.23 0.29 0.5145 P38 0.81 0.84 0.85 0.9 0.8505 

P19 0.55 0.55 0.61 0.39 0.511 P39 0.82 0.83 0.77 0.83 0.818 

P20 0.92 0.64 0.88 0.94 0.85 P40 0.92 0.88 0.88 0.94 0.91 

Characteristic  
weight 

0.3 0.25 0.15 0.3 1 Characteristic  
weight 

0.3 0.25 0.15 0.3 1 

The next stage constitutes the determination of quality classes. 
The minimum value is 0.4395, and the maximum value is 0.91, the amplitude is 

0.4705. The number of quality classes is 6, and the class size is 0.0784. 
The quality classes are: 

Class 1 ∈ [0.4395;0.5179); 
Class 2 ∈ [0.5179;0.596); 
Class 3 ∈ [0.596;0.67); 
Class 4 ∈ [0.67;0.75); 
Class 5 ∈ [0.75;0.83); 
Class 6 ∈ [0.83;0.91]. 

Determining the quality classes and their lower and upper bounds makes up the 
starting point for the next stage, software product quality centralization. 
After the centralization of data regarding the quality level of each program, the distribution 
of program in quality classes is obtained, given in table 4: 
Table 4. Program distribution in quality classes 

Class Program 
number 

1 5 
2 5 
3 3 
4 9 
5 8 
6 10 

Total 40 



  
Text Entities' Metrics 

 

 
30 

 
Corresponding to this algorithm of computing the aggregated level of software 

product quality, the quality characteristics costs specific to every program are added to the 
algorithm. Based on these the software product quality cost is determined. 

By building dedicated software the processing of the 1067 programs of the sample 
is automated, the extension of the number of processed programs is a quantitative 
adaptation.  

 

6. Conclusions 
 

Program classes are related to costs. Thus, the level of expenses that has to be 
supported by customers in order to benefit from superior quality software products is 
identified. 

The method of developing classes mixes the quality level of software products with 
the importance given by clients to each software quality characteristic. 

For each client, the characteristics bare a level of importance dependent on the 
utility that they bring to the bought software product. The quality cost calculation includes 
the weight given to each quality characteristic, considering the level of homogeneity desired 
for the software product. The customers that buy the software product strictly for one of its 
quality characteristics will not pay extra for improvements as long as the clients who buy 
products with a large range of applicability need a high level of quality and homogeneity.   

By implementing quality classes the software products are differentiated and 
catalogued, thus offering to clients to clients to find the needed software depending on its 
cost and desired quality. 
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