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Abstract: When applying structural equation modeling (SEM) technique for analytical 
procedures, various issues are involved. These issues may concern sample size, overall fit 
indices and approach. Initiates of SEM may find it somewhat daunting in resolving these 
technical issues. The purpose of this paper is to highlight key issues in adopting SEM technique 
and various approaches available. This paper provides a discussion on the sample size, fit 
indices, standardized paths, unidimensionality test and various approaches in relation to SEM. 
It is hoped that having reviewed the paper, new researchers can devote more time to data 
analysis instead of procedural issues involved. 
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Introduction 
 

The modern positivist paradigm for conducting scientific research rests on 
developing sound theoretical frameworks followed by rigorous testing of these theories. One 
often adopted technique is structural equation modeling (SEM). SEM is a powerful statistical 
technique that combines measurement model or confirmatory factor analysis (CFA) and 
structural model into a simultaneous statistical test.  

SEM is particularly valuable in inferential data analysis and hypothesis testing 
where the pattern of inter-relationships among the study constructs are specified a priori and 
grounded in established theory. It has the flexibility to model relationships among multiple 
predictor and criterion variables, and statistically tests a priori theoretical assumptions 
against empirical data through CFA (Chin, 1998). In most cases, the method is applied to 
test ‘causal’ relationships among variables.  

In applying SEM technique for analytical procedures, many issues are involved. 
These issues may concern various overall fit indices and selection of the appropriate 
approach (Lei & Wu, 2007). Initiates of SEM may find it somewhat daunting in resolving 
these issues. The purpose of this paper is to highlight key issues in adopting SEM technique 
and various approaches so that researchers can devote more time to data analysis instead of 
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dealing with procedural issues. This paper provides a discussion on the sample size, fit 
indices, standardized paths, unidimensionality test and various approaches in relation to 
SEM. Wherever appropriate, numerical examples were provided to illustrate the issues and 
procedures highlighted. 
 

Structural equation modeling and sample size 
 

Typically, a hypothesized model is tested with a linear equation system through 
SEM. This method of study investigates the extent to which variations in one variable 
corresponded to variations in one or more variables based on correlation co-efficient. SEM is 
usually used because it permits the measurement of several variables and their inter-
relationships simultaneously. It is more versatile than other multivariate techniques because 
it allows for simultaneous, multiple dependent relationships between variables. 

The hypothesized causal relationships can be tested among the theoretical 
constructs using software programs such as EQS (Bentler, 2002) to estimate and evaluate the 
structural portion of the model. The raw data for the variables are input into the software to 
generate the iterations, goodness-of-fit indices and standardized paths. The various 
variables are usually summated scales where the attributes measuring a common underlying 
construct are summed and divided by the number of items. 

McQuitty (2004) suggested that it is important to determine the minimum sample 
size required in order to achieve a desired level of statistical power with a given model prior 
to data collection.  Schreiber et al (2006) mentioned that although sample size needed is 
affected by the normality of the data and estimation method that researchers use, the 
generally agreed-on value is 10 participants for every free parameter estimated. Although 
there is little consensus on the recommended sample size for SEM (Sivo et al, 2006), Garver 
and Mentzer (1999), and Hoelter (1983) proposed a ‘critical sample size’ of 200. In other 
words, as a rule of thumb, any number above 200 is understood to provide sufficient 
statistical power for data analysis. 

 

Fit indices 
 

There are several indicators of goodness-of-fit and most SEM scholars recommend 
evaluating the models by observing more than one of these indicators (Bentler & Wu, 2002; 
Hair et al. 1998). Marsh, Balla and McDonald (1988) proposed that the criteria for ideal fit 
indices are relative independence of sample size, accuracy and consistency to assess 
different models, and ease of interpretation aided by a well defined pre-set range. Based on 
this stated criteria, Garver and Mentzer (1999) recommended the nonnormed fit index 
(NNFI); the comparative fit index (CFI), and the root mean squared approximation of error 
(RMSEA). Therefore, the commonly applied fit indices are NNFI and CFI (>0.90 indicates 
good fit), RMSEA (<0.08 indicates acceptable fit), and commonly used χ2 statistic (χ2/ d.f. 
ratio of 3 or less). 

The NNFI, also known as the Tucker-Lewis index, compares a proposed model’s fit 
to a nested baseline or null model. Additionally, NNFI measures parsimony by assessing the 
degrees of freedom from the proposed model to the degrees of freedom of the null model. 
NNFI also seems resilient against variations in sample size and, thus, is highly 
recommended. An acceptable threshold for this index is 0.90 or greater. Bentler (1990) 
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developed the CFI as a noncentrality parameter-based index to overcome the limitation of 
sample size effects. This index ranges from 0 to 1, with 0.90 or greater representing an 
acceptable fit. RMSEA is an extremely informative criterion in evaluating model fit. The 
RMSEA index measures the discrepancy between the observed and estimated covariance 
matrices per degree of freedom (Steiger, 1990). It measures the discrepancy in terms of the 
population and not the sample. Thus, the value of this fit index is expected to better 
approximate or estimate the population and not be affected by sample size. Again, values 
run on a continuum from 0 to 1. Values less than 0.05 indicate good fit, values up to 0.08 
reasonable fit and ones between 0.08 and 0.10 indicate mediocre fit.  

Chi-square (χ2) is the most common method of evaluating goodness-of-fit. A low χ2 
value, indicating nonsignificance, would point to a good fit. This is because chi-square test is 
used to assess actual and predicted matrices. Thus, non-significance means that there is no 
considerable difference between the actual and predicted matrices (Hair et al., 1998). 
Therefore, low χ2 values, which result in significance levels greater than 0.05 or 0.01, 
indicate that actual and predicted inputs are not statistically different. The significance levels 
of 0.1 or 0.2 should be exceeded before nonsignificance is confirmed (Fornell, 1983). 

In terms of a model’s goodness-of-fit, p-values indicate whether the model is 
significantly different than the null model. In statistics, the null is usually ‘0’. This, however, is 
not necessarily so in SEM. The null hypothesis is the hypothesized model in which the 
parameters were set up for the hypothesized model, indicating whether a path should exist 
or not between variables. A high ρ-value, or a value larger than zero, would mean that the 
null hypothesis is rejected leading to a high probability that it would be wrong in doing so 
(MacLean & Gray, 1998). Thus, a high ‘ρ’ is good as it indicates that the observed model is 
not significantly different from what was expected. Conversely, a low ρ-value, or one close to 
zero, implies a ‘bad model’ because the null hypothesis is rejected with a low probability of 
being wrong in reaching that conclusion.  

There is a limitation to the chi-square test. The χ2 is highly sensitive to sample size 
especially if the observations are greater than 200. An alternate evaluation of the χ2 statistic 
is to examine the ratio of χ2 to the degrees of freedom (d.f.) for the model (Joreskog & 
Sorbom, 1993). A small χ2 value relative to its degree of freedom is indicative of good fit. 
Kline (1998) suggested that a χ2/ d.f. ratio of 3 or less is a reasonably good indicator of 
model fit.  

As an example, fit indices were generated for a hypothesized model using SEM 
technique and presented in Table 1. 
 
Table 1. Examples of fit indices of a hypothesized model 

Model d.f. χ2 NNFI CFI RMSEA 
 

Hypothesized Model 
 

18 
 

416.69 
 

-0.043 
 

0.330 
 

0.321 

 
As indicated in these results, the goodness of fit measures for the hypothesized 

model came nowhere near the minimum requirements for the benchmark fit indices. The χ2 
value is 416.69 based on 18 d.f. and probability value (ρ) for χ2 statistic is less than 0.001. 
The NNFI = -0.043, CFI = 0.330 and RMSEA = 0.321 which indicate a ‘bad fit’ for the 
hypothesized model (Bentler, 1990). Since the hypothesized model did not have a ‘good fit’, 
it was rejected.  
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Standardized paths and test for unidimensionality 
 

Besides the ‘goodness-of-fit’ indices, SEM may also be used to look at paths among 
the variables. The causal paths can be evaluated in terms of statistical significance and 
strength using standardized path coefficient that range between -1 and +1.  Based on α of 
0.05, the test statistic generated from the EQS output should be greater than ± 1.96 to 
indicate that the null hypothesis can be rejected. The rejection of the null hypothesis means 
that the structural coefficient is not zero (Bentler, 2002; Byrne, 1994). After reviewing the 
statistical significance of the standardized paths, the strength of relationships among the 
variables can then be reviewed. According to Chin (1998), standardized paths should be at 
least 0.20 and ideally above 0.30 in order to be considered meaningful for discussion. 

As another example, the standardized paths of a hypothesized model were 
computed and shown in Table 2.  
 
Table 2. Examples of standardized paths of a hypothesized model 

 
Hypothesis 

 
Causal Path 

Standardized 
Path Coefficient 

H1 Informal knowledge acquisition → Market knowledge use 0.209*** 
H2 Informal knowledge dissemination → Market knowledge use 0.210** 
H3 Shared vision → Informal knowledge acquisition Nonsignificant 
H4 Shared vision → Informal knowledge dissemination 0.452**** 
H5 Interpersonal trust → Informal knowledge acquisition 0.150* 
H6 Interpersonal trust → Informal knowledge dissemination Nonsignificant 

Note: * ρ < 0.05 
** ρ < 0.01  
*** ρ < 0.001 
**** ρ < 0.0001 

 
In this hypothesized model, four of the paths were statistically significant. 

Comparing these results with the hypotheses, the standardized path coefficient of 0.209 
seems to indicate that informal knowledge acquisition is positively associated with market 
knowledge use (H1). Also, the standardized path coefficient of 0.210 suggests that informal 
knowledge dissemination is also positively associated with market knowledge use (H2).  

The path between shared vision and informal knowledge acquisition was not 
statistically significant indicating that shared vision is not positively associated with informal 
knowledge acquisition (H3). The standardized path coefficient between shared vision and 
informal knowledge acquisition was 0.452. This seems to suggest that shared vision is 
positively associated with informal knowledge dissemination (H4).  

Although the results point to a significant association between interpersonal trust 
and informal knowledge acquisition (H5) with standardized path coefficient of 0.150, this 
path adds minimal value to the understanding of the relationship between interpersonal 
trust and informal knowledge acquisition. The reason is because the standardized path 
coefficient failed to meet the minimum benchmark for path strength. Chin (1998) has 
proposed that standardized paths should be at least 0.20 and ideally above 0.30 in order to 
be considered meaningful. The path between interpersonal trust and informal knowledge 
dissemination was nonsignificant suggesting that interpersonal trust is not positively 
associated with informal knowledge dissemination (H6). 
 



  
Quantitative Methods Inquires 

 
80 

Once the overall model fit has been evaluated, the variables can be assessed for 
unidimensionality. In accordance to accepted practice (Anderson, 1987; Churchill 1979; 
Gerbing & Anderson, 1988), the property of scales for unidimensionality was assessed. 
Unidimensionality is referred to as the existence of one construct underlying a set of items. 
Germain, Droge and Daugherty (1994) suggested the use of principal components analysis 
to test for unidimensionality. Based on this suggestion, each variable should be separately 
subject to principal components analyses to determine the eigenvalue.  As a rule, 
eigenvalues that are greater than 1 provide support for the unidimensionality of these 
scales.  

As an illustration, the eight variables in a particular study were separately subject to 
principal components analyses and the eigenvalues presented in Table 3. 

 
Table 3. Examples of eigenvalues of measures 

Initial Eigenvalues  
Measure 

 

 
Component 

 
Total  % of 

Variance 
Cumulative 

% 
Market Knowledge Use 
 

1 
2 
3 
4 
5 
6 
7 

4.048 
1.040 
0.726 
0.425 
0.327 
0.247 
0.189 

57.824 
114.852 
10.365 
6.071 
4.664 
3.528 
2.696 

57.824 
72.676 
83.041 
89.112 
93.776 
97.304 
100.00 

Structural Knowledge 
Acquisition 

1 
2 
3 

1.925 
0.651 
0.424 

64.155 
21.702 
14.142 

64.155 
85.858 
100.00 

Structural Knowledge 
Dissemination 
 

1 
2 
3 
4 
5 

3.094 
0.660 
0.461 
0.427 
0.358 

61.888 
13.193 
9.214 
8.547 
7.164 

61.888 
75.082 
84.296 
92.836 
100.00 

Informal Knowledge Acquisition 
 

1 
2 
3 
4 
5 

2.620 
0.910 
0.627 
0.507 
0.336 

52.396 
18.191 
12.549 
10.139 
6.725 

52.396 
70.587 
83.136 
93.275 
100.00 

Informal Knowledge 
Dissemination 

1 
2 
3 

1.786 
0.731 
0.483 

59.539 
24.362 
16.099 

59.539 
83.901 
100.00 

Shared Vision 
 

1 
2 
3 
4 

3.147 
0.317 
0.283 
0.252 

78.679 
7.936 
7.081 
78.679 

78.679 
86.615 
93.697 
100.00 

Interpersonal Trust 
 

1 
2 
3 
4 

3.272 
0.398 
0.198 
0.131 

81.804 
9.961 
4.959 
3.275 

81.804 
91.765 
96.725 
100.00 

Perceived Importance of Market 
Knowledge 
 
 
 

1 
2 
3 
4 
5 

4.049 
0.473 
0.205 
0.156 
0.117 

80.974 
9.462 
4.097 
3.122 
2.344 

80.974 
90.436 
94.534 
97.656 
100.00 

 
Except for market knowledge use, only the first eigenvalue was greater than 1 for 

all the rest of the scales. This provided support for the unidimensionality of these scales. For 
market knowledge use, two eigenvalues were greater than 1 but the second eigenvalue was 
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only 1.04. Since second eigenvalue is close to 1 and this is a measure that has been used 
extensively in previous research, it is reasonable to accept the unidimensionality of this scale.  

 

Various approaches 
 

There are several approaches to weighing individual scale items in SEM. These 
approaches include total aggregation, total disaggregation, partial disaggregation, and 
partial aggregation (Bagozzi & Heatherton, 1994). 

Under the total aggregation approach, all the items are summed into a single 
indicator or latent variable. The items are arbitrarily given the same weight as is traditionally 
done in non-SEM research. On the other hand, under the total disaggregation approach, 
each individual item is taken separately as an individual indicator. Under this approach, SEM 
weighs the individual items to optimize contribution to the latent variables. Bagozzi and 
Foxall (1996) mentioned that one of the main drawbacks of the total aggregation approach 
for CFA is that information is lost and the distinctiveness of the components is obscured. A 
disadvantage of the total disaggregation approach is it is very sensitive to measurement 
error which makes it more difficult to obtain satisfactory model fits. The partial aggregation 
approach retains the idea of a single underlying factor where dimensions of the construct 
are organized hierarchically as indicators of the factor. Similar to the total aggregation 
approach, the main drawback is that the unique dimension of the construct may be 
obscured. 

To overcome such limitations, Bagozzi and Heatherton (1994) recommended that a 
partial disaggregation approach be used. Partial disaggregation is a practical SEM 
application that allows the use of a large number of indicators to represent a latent variable 
(Garver & Mentzer, 1999). It is an intermediary level of analysis between the total 
aggregation and total disaggregation approach. Unlike a total aggregation approach, the 
partial disaggregation approach helps to reduce the number of parameters to be estimated 
and to capitalize on the increase in reliability resulting when items on sub-scales are 
summed. Each dimension can be measured with two indicators wherein each indicator is 
itself the sum of multiple items.  

Bagozzi and Heatherton (1994) suggested between five to seven items that can be 
randomly divided into two components for partial disaggregation. If there are more than 
nine items, then there could be three or more components. Based on the partial 
disaggregation procedures, there is no need to divide the aggregated total by the number of 
items so that each latent variable is an average score. Thus, the items for each of the latent 
variables can be randomly grouped into two components each based on odd and even 
sequence and the raw data input into the measurement model. 

 

Conclusion 
 

This paper has provided a short discussion on the sample size, fit indices, 
standardized paths, unidimensionality test and various approaches in relation to SEM. Some 
examples were provided to illustrate the issues highlighted. Through a better understanding 
of the issues and procedures in adopting the structural equation technique, researchers will 
be able devote more time to data analysis rather than resolving procedural issues. 
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