

Quantitative Methods Inquires

483

PARALLEL ALGORITHMS FOR LARGE SCALE
MACROECONOMETRIC MODELS

Bogdan OANCEA1
PhD, Assistant Professor, Artifex University, Bucharest, Romania

E-mail: oanceab@ie.ase.ro

Monica NEDELCU
PhD, Associate Professor, University of Economics, Bucharest, Romania

E-mail: mona.nedelcu@yahoo.com

Abstract: Macroeconometric models with forward-looking variables give raise to very large
systems of equations that requires heavy computations. These models was influenced by the
development of new and efficient computational techniques and they are an interesting testing
ground for the numerical methods addressed in this research. The most difficult problem in
solving such models is to obtain the solution of the linear system that arises during the Newton
step. For this purpose we have used both direct methods based on matrix factorization and
nonstationary iterative methods, also called Krylov methods that provide an interesting
alternative to the direct methods. In this paper we present performance results of both serial
and parallel versions of the algorithms involved in solving these models. Although parallel
implementation of the most dense linear algebra operations is a well understood process, the
availability of general purpose, high performance parallel dense linear algebra libraries is
limited by the complexity of implementation. This paper describes PLSS – (Parallel Linear
System Solver) - a library which provides routines for linear system solving with an interface
easy to use, that mirrors the natural description of sequential linear algebra algorithms.

Key words: parallel algorithms; linear algebra; macroeconometric models

1. Introduction

Macroeconometric models with forward-looking variables are a special class of

models which generates large systems of equations. The clasical method used to solve such
models is the extended path algorithm proposed by Fair and Taylor (Fisher, 1992). They use
Gauss-Seidel iterations to solve the model, period after period, for a given time horizon. The
convergence of this method depend on the order of the equations.

In this paper we’ll take another approach – we’ll solve the system by the Newton
method together with direct and iterative techniques that are well suited for large models.
This approach was avoided in the past because it is computationally intensive. The new

Quantitative Methods Inquires

484

techniques described in this paper shows that the Newton method is an interesting and cost-
effective alternative even for very large macroeconometric models.

The advantages of the Newton method are its quadratic speed of convergence and
some modifications leading to a global convergent behavior. The nonlinear model with
rational expectations can be represented like this:

hi(yt,yt-1, ... ,yt-r,yt+1|t-1, ... ,yt+h|t-1, zt)=0 i=1,... m (1)

where yt+j|t-1 is the expectation of yt+j conditional on the information available at the end of
the period t-1 and zt represents the exogenous and random variables. For consistent
expectations, the forward expectations yt+j|t-1 have to coincide with the next period’s forecast
when solving the model conditional on the information available at the end of period t-1.
These expectations are therefore linked in time and solving the model for each yt conditional
on some start period 0 requires each yt+j|0 for j = 1,2, ... T-t and a terminal condition yT+j|0 j
= 1,2 ..., h.

Stacking up the these equations for successive time periods give rise to a large
nonlinear system of equations. The Newton method for this model gives the following
algorithm:

The most computational intensive step in the Newton method is the linear system

J(k)s(k) = b(k) when this system is very large. Direct methods for computing the solution of
the system can be very expensive because of the computational cost and high memory
requirements. That’s why, high performance parallel algorithms are an efficient alternative
to the classical serial algorithms.

Another alternative to the serial direct methods are iterative methods that computes
only an approximation of the solution. This does not influence the convergence of the
Newton method.

An important problem is to decide which level of precission for the solution of the
linear system guarantees the rapid convergence of the Newton method at the lowest
possible cost. To address this problem we define r(k) = b(k) – J(k)s(k) the residual for the
approximate solution of the linear system at the kth Newton iteration. It can be shown that
the Newton method is locally convergent if ||r(k)|| / ||b(k)|| is a sequence uniformly less
than 1.

Parallel versions for the iterative algorithms can also be developed quickly.

2. Iterative and direct methods for linear systems

Iterative methods
An interesting alternative to the stationary iterative methods such as Jacobi or

Gauss-Seidel are Krylov techniques. These techniques use information that changes from

NEWTON Method
Given an initial solution y(0)
For k = 0,1,2, ... until convergence
 Evaluate b(k) = - h(y(k),z)
Evaluate J(k) = ∂h(y(k),z)/∂y’
Solve J(k)s(k) = b(k)
y(k+1) = y(k) + s(k)
end

Quantitative Methods Inquires

485

iteration to iteration. For a linear system Ax = b Krylov methods compute the ith iterate x(i)
as :

x(i)=x(i-1)+delta(i)i = 1,2,... (2)

The operations involved to compute the ith update delta(i) are only inner products,

saxpy and matrix-vector products, all these beeing level 2 BLAS operations. This is a very
good reason to use Krylov methods for very large systems. They are computational attractive
comparatively with direct methods that use level 3 BLAS operations.

The best known of the Krylov methods is the conjugate gradient (CG) method that

solves symmetric positive definite systems. The main idea of the CG method is to update the

iterates x(i) in a way to ensure the largest decrease of the objective function bxAxx ''
2
1

−

while keeping the direction vectors delta(i) A-orthogonal. The implementation of this method
uses only one matrix-vector multiplication per iteration. In exact arithmetic, the CG method
yields the solution in at most n iterations. The complete description of the CG method can be
found in (Golub, 1996). Another Krylov method implemented by the author of this paper is
the BiConjugate Gradient (BiCG) method. BiCG takes a different approach based upon
generating two mutually orthogonal sequence of residual vectors and A-orthogonal
sequences of direction vectors. The updates for residuals and for the direction vectors are
similar to those of the CG method, but are performed using A and its transpose. The
disadvantages of the BiCG method are an erratic behavior of the norm of the residuals and
potential breakdowns. An improved version that solves these disadvantages, called
BiConjugate Gradient Stabilized (BiCGSTAB) is presented bellow:

The BiCGSTAB method needs to compute 6 saxpy operations, 4 inner products and

2 matrix-vector products per iteration The memory requirements are to store matrix A and 7
vectors of size n.

A very widely used Krylov method for general nonsymmetric systems is the

Generalized Minimal Residuals (GMRES). The pseudo-code for GMRES is:

BiCGSTAB
Given an initial solution x(0) compute r = b – Ax(0)
ρ0 = 1, ρ1 = r(0)’r(0), α = 1, ώ = 1, p = 0, v = 0
for k = 1,2, ... until convergence
 β = (ρk/ ρk-1)(α/ώ)
 p = r + β(p- ώv)
 v = Ap
 α = ρk/(r(0)’v)
 s = r – αv
 t = As
 ώ = (t’s)(t’t)
 x(k) = x(k-1) + αp + ώs
 r = s – ώt
 ρk+1 = - ώr(0)’t
end

Quantitative Methods Inquires

486

The main difficulty of the GMRES methods is not to lose the orthogonality of the

direction vectors v(j). In order to do this the GMRES method uses a modified Gram-Schmidt
orthogonalization process. GMRES requires the storage and computation of an increasing
amount of information at each iteration: vectors v and matrix H . To overcome the increasing
memory requirement, the method can be restarted after a chosen number of iterations m
using the current intermediate results as a new starting point.

The operation count per iteration cannot be used to directly compare the
performance of BiCGSTAB with GMRES because GMRES converges in much less iterations
than BiCGSTAB.

Direct methods

The direct solution for a linear system Ax = b takes two steps:
• In the first step the classical decomposition A=LU is computed (L is a unit lower

triangular matrix and U is an upper triangular matrix)
• In the second step the two triangular systems Ux = y and Ly = b are solved by back

substitution and forward elimination.
For symmetric positive definite matrices the factorization is achieved by using the

Cholesky decomposition A = LLT. A detailed description of the serial algorithms can be found
in (Golub, 1996).

3. Parallel algorithms for linear systems

Software packages for solving linear systems have known many generations of
evolution in the past 25 years. In ’70, LINPACK was the first portable linear system solver
package. At the end of ‘80 the next software package for linear algebra problems was
LAPACK (Anderson, 1992) which, few years later, was adapted for parallel computation
resulting the ScaLAPACK (Choi, 1992) library. Although parallel algorithms for linear systems
are well understood, the availability of general purpose, high performance parallel dense
linear algebra libraries is limited by the complexity of implementation. For the purpose of
solving very large macroeconometric models we have developed a software package PLSS
(Parallel Linear System Solver) that implements parallel algorithms for linear system solving.
The PLSS library was designed with an easy to use interface, which is almost identical with

GMRES
Given an initial solution x(0) compute r = b – Ax(0)
ρ = ||r||2, v(1) = r/ ρ, β = ρ
for k = 1,2,... until convergence
 for j = 1,2, ... k,
 h(j,k) = (Av(k))’v(j)
 end

 v(k+1) = Av(k) - ∑ =

k

j
jvkjh

1
)(),(

(Gram-Schmidt orthogonalization)
 h(k+1,k) = ||v(k+1)||2
 v(k+1,k) = v(k+1)/h(k+1,k)
end
y(k) = argminy ||βe1 – H(k)y||2
x(k) = x(0) + [v(1) ... v(k)] y(k)

Quantitative Methods Inquires

487

the serial algorithms interface. This goal was obtained by means of data encapsulation in
opaque objects that hide the complexity of data distribution and communication operations.
The PLSS library was developed in C and for the communication between processors we
used MPI library (Gropp, 1994) which is a “de facto” standard in message passing
environments. The structure of the library is described in (Oancea, 2002),(Oancea, 2003).
Here are the most important details about the internal structure of the library.

Native BLAS
library

Native MPI
library

Standard C library

The interface
PLSS-BLAS

The interface
PLSS-MPI

The interface PLSS-
Standard C library

Data distribution level

Object manipulation routines

Application Program Interface – provides routines for
parallel linear system solving

Architecture dependent level

Architecture independent level

Data distribution and
encapsulation level

API level

Local BLAS routines

Figure 1. The PLSS structure

The first level contains the standard BLAS, MPI and C libraries. This level is

architecture dependent. The second level provides the architecture independence. It
implements the interface between the base level and the rest of the PLSS package. Using
such an approach, the base libraries (BLAS, MPI) can be easily replaced without influencing
the rest of the package. This interface has the following components:

• BLAS-PLSS interface. Each processor uses the BLAS routines for local computations.
Because BLAS library is written in FORTRAN, an interface is needed to call FORTRAN
routines from C programs.

• MPI-PLSS interface. PLSS uses the following communication operations: MPI_Bcast,
MPI_gatherv, MPI_scaterv, MPI_Allgatherv, MPI_Allscatterv, MPI_Reduce,
MPI_Allreduce, MPI_Send, MPI_Receive, MPI_Wait. All these MPI operations are
encapsulated in PLSS functions in order to decouple the PLSS from MPI.

• PLSS-Standard C library interface. This interface encapsulates the standard C
library functions (e.g. malloc, calloc, free) in PLSS functions.

The next level implements the data distribution and encapsulation model. All details

regarding distribution of vectors and matrices on local processors are placed at this level.
Also at this level we can found data encapsulation in opaque objects, hiding the complexity
of communication operations. This level defines:

• Objects that describe vectors and matrices.
• Object manipulation routines – object creation, destroying and addressing routines.
• Local BLAS routines. Because matrices and vectors are encapsulated in objects, we

must extract some information from these objects such as vector/matrix dimension,
their localization etc, before calling a BLAS routine to perform some computations.
Local BLAS routines extract these information and then call the standard BLAS
routines.

Quantitative Methods Inquires

488

• Communication functions – these functions implement the communication
operations between processors.
The top level of the PLSS library is the application program interface. PLSS API

provides a number of routines that implements parallel BLAS operations and parallel linear
system solving operations based on LU and Cholesky matrix factorization.

The PLSS library uses a bidimensional mesh of processors. We have chosen this
model of processor interconnection based on scalability studies of matrix factorization
algorithms (Grama, 2003, Oancea, 2002). For a linear system Ax = b, vectors x and b are
distributed on processors in a block column cyclic model and the system matrix A is
distributed according to the vector distribution – the column A*,j will be assigned to the same
processor as xj.

Here are some examples of parallel implementation of some basic operations in
the PLSS package. One of the most used operation in linear system solving is matrix-vector
multiplication: Ax = y. Figure 2 shows the necessary steps to implement parallel matrix-
vector multiplication. The matrix in this example has 8 rows and 8 columns.

3 4 5 6 7 80 1 2

x

x

x

x

x

x

x

x

x

0

1

2

3

4

5

6

7

8

0

3
6

1
4

7

2
5

8

a)

0 1 2 3 4 5 6 7 8

x
0
x
x

x
x
x

x
x
x

1

2

3

4

5

6

7

8

x
0
x
x

x
x
x

x

x
x

1

2

3

4

5

6

7

8

x
0
x
x
1

2

0
3

6

1
4

7

2

5

8

 (b)

A A A
0,0

A
1,0

A A

A
2,0

A A

1,1

2,1

1,2

0,1 0,2

2,2

x
x
x

x
x
x

3

4

5

6

7

8

y

y

y0

3

6
y

y

y0

3

6
y

y

y0

3

6

y

y

y

4

7

1

y

y

y2

5

8 y

y

y2

5

8

y

y

y

4

7

1

y

y

y2

5

8

y

y

y

4

7

1

0

3

6

1

4

7

2

5
8

 (c)
0 1 2 3 4 5 6 7 8

0

3

6

1

4

7

2

5

8

y

y
y

y
y

y

y

y
y

0

3

6

1
4

7

2

5

8

d)

0 1 2 3 4 5 6 7 8

Figure 2. Matrix-Vector multiplication procedure

In the first step (Figure. 2a) the vector components are distributed on the processors
columns. After vector distribution it follows a step consisting of local matrix-vector
multiplications (Figure. 2b). At this moment each processor owns a part of the final result
(Figure. 2c). In the last step, these partial components are summed up along the processor
rows (Figure. 2d).

Another frequently used basic operation is rank-1 update. It consists in the
following computation: A = A + yxt.

Assuming that x and y have identical distributions on processor columns and rows,
each processor has the data needed to perform the local computations.

Quantitative Methods Inquires

489

These two basic operations, matrix-vector multiplication and rank-1 update can be
used in order to derive a parallel algorithm for matrix-matrix multiplication. It is easy to
observe that the product C = AB can be decomposed in a number of rank-1 updates:

C = a0b0

t + a1b1
t + … + an-1bn-1

t (4)
where ai are the columns of matrix A and bi

t are the rows of matrix B.
Parallelization of matrix-matrix multiplication is equivalent with parallelization of a

sequence of rank-1 updates. In order to obtain an increase in performance, the rank-1
update can be replaced with rank-k update, but in this case x and y will be rectangular
matrices. We conclude this section with the implementation of the block Cholesky
factorization. Cholesky factorization consists in finding the factorization of the form A = LLT
where A is a symmetric positive definite matrix. Figure 3 shows the partitioning of matrices A
and L.

 A_11 *
A =
 A_21 A_22

 L_11 0
L =
 L_21 L_22

Figure 3. The partitioning of matrices A and L

From A = LLT we can derive the following equations :

 A11 = L11L11
T (5)

L21L11
T = A21 (6)

A22 – L21L21
T = L22L22

T (7)

If matrix L will overwrite the inferior triangle of A, then the Cholesky factorization
consists in the following three computations:

A11 ← L11 = Cholesky(A11) (8)
A21 ← L21 = A21L21

-T (9)
A22 ← A22 –L21L21

T (10)

The dimension of matrix block A11 is computed such that A11 will be stored on only
one processor and the factorization from equation (8) will be a local operation. Under these
conditions A21 is stored on the same column of processors and L11 will be distributed to these
processors. The parallel Cholesky factorization can be described as follows:

1. Determine the block size such that A11 is stored on a single processor.
2. Split matrix A into blocks A11, A21, A_22 according to the block size computed in step

1.
3. Compute the Cholesky factorization of submatrix A11 – this is a local operation.
4. Distribute A11 on the column of processors.

Quantitative Methods Inquires

490

5. Solve the triangular system given by equation (9) – this is a local operation because
A11 was distributed in the pervious step to all processors that participate in this
computation.

6. Compute the symmetric rank-k update given by equation (10).
7. Recursive apply the same steps to matrix A22.

4. Experimental results

We have conducted performance experiments with both serial and parallel versions
of the algorithms for two iterative methods – GMRES(40) and BiCGSTAB and with the direct
method that consists in matrix factorization. For our experiments we have considered
nonlinear systems with the number of variables between 10000 and 38000. The tolerance
for the solution was fixed at 10-4 for all methods. The serial algorithms are implemented
using the C++ programming language under the Linux operating system. Both iterative
methods behave relatively well for our problems but BiCGSTAB is less expensive in number
of floating point operations and memory requirements. Table 1 shows the number of floating
point operations per iteration for each Newton variant to converge and the amount of
memory needed.

Table 1. The number of MFLOP/iteration and memory requirements

GMRES(40) BiCGSTAB Matrix
dimension MFLOP Memory (Mb) MFLOP Memory (Mb)

10000 2100 3.12 723 1.24
14000 4800 4.92 2880 1.88
18000 14100 6.31 12800 3.12
22000 29500 8.23 27500 3.66
26000 58000 8.99 52000 4.99
30000 125000 12.11 112000 5.82
34000 140000 12.55 120000 8.02
38000 200000 15.02 175000 8.82

0

50000

100000

150000

200000

250000

10000 14000 18000 22000 26000 30000 34000 38000

Matrix dimension

M
FL

O
P

GMRES(40) BiCGSTAB

Figure 4. The number of floating point operations per iteration

Quantitative Methods Inquires

491

0

5

10

15

20

10000 14000 18000 22000 26000 30000 34000 38000

Matrix dimension

M
B

GMRES(40) BiCGSTAB

Figure 5. Memory requirement per iteration

These results show that the iterative methods can be a good alternative to direct

methods for very large systems of equations.
Parallel versions of the algorithms were executed on a cluster of workstations,

connected through a 100Mb Ethernet local network, each station with 1GB of main memory.
We have tested the PLSS package for both iterative and direct methods, for 1, 2, 4, 8, and
16 processors. The dimension of the matrix was maintained fixed with 22000 rows and
columns. Figure 6(a) shows the speedup of the parallel algorithms in the case when iterative
methods are used for solving the model and figure 6(b) shows the speedup in the case of
using the direct methods. It can be observed that the direct method has a better speedup the
the iterative ones.

0

2

4

6

8

10

1 2 4 8 16

Number of processors

Sp
ee

du
p

GMRES(40) BiCGSTAB

a) Parallel iterative methods

Quantitative Methods Inquires

492

0

2

4

6

8

10

12

1 2 4 8 16

Number of processors

S
pe

ed
up

b) Direct method (LU factorization)

Figure 6. The speed-up for parallel versions of the algorithms

5. Conclusion

In this paper we have described algorithms for solving macroeconometric models
with forward-looking variables based on the Newton method for nonlinear systems of
equations. The most computational intensive step in the Newton method consists in solving a
large linear system at each iteration. We have compared the performance of solving this
linear system for two iterative methods – GMRES(40) and BiCGSTAB and the direct method
based on matrix factorization.

For serial algorithms, iterative Krylov methods proved to be an interesting
alternative to exact Newton method with LU factorization for large systems. Both the
computational cost and memory requirements are inferior in the case of iterative Krylov
methods compared with LU factorization.

We have developed a library (PLSS - Parallel Linear System Solver) that implements
parallel algorithms for linear system solving. Because of the complexity of parallel algorithms
it is difficult to design an easy to use parallel linear system solver. The PLSS infrastructure
was designed to provide users a simple interface, close to the description of the serial
algorithms. This goal was achieved through data encapsulation, hiding the complexity of
data distribution and communication operations from users. PLSS was developed in C using
MPI and can be run on many different kinds of parallel computers – it can be run on real
parallel computers as well as on simple cluster of workstations

Comparing the performance of the parallel algorithms, LU factorization showed a
better scalability then the iterative methods because the iterative algorithms involve a global
communication step at the end of each iteration. This communication step slows down the
overall execution of the program.

References

1. Anderson, E., et all. LAPACK Users’s Guide, SIAM, Philadelphia, 1992
2. Barrett, R. et. al. Templates for the solution of linear system building blocks for iterative

methods, SIAM, 1994

Quantitative Methods Inquires

493

3. Choi, J., Dongarra, J., Pozo, R., and Walker, D. W. ScaLAPACK : a scalable linear algebra
library for distributed memory concurrent computers, Proceedings of the fourth
Symposium on the Frontiers of Massively Parallel Computers, IEEE Comput. Soc. Press,
1992

4. Dongarra, J., Du Croz, J., Hammarling, S., and Duff, I. A set of level 3 basic linear algebra
subprograms, ACM Trans. Math. Soft., 16(1), 1990, pp.1-17

5. Dongarra, J., Du Croz, J., Hammarling, S., and Hanson, R. An extended set of FORTRAN basic
linear algebra subprograms. ACM Trans. Math. Soft., 14(1), March, 1988, pp. 1-17

6. Fisher, P. Rational Expectations in Macroeconometric Models, Kluwer Academic Publisher,
Dordrecht, 1992

7. Golub G. H., and Van Loan, C. F., Matrix Computations, Johns Hopkins Series in Mathematical
Sciences, The Johns Hopkins University Press, 1996

8. Grama, A., Gupta, A., Karypis, G., and Kumar V. Introduction to Parallel Computing, 2nd
edition, Addison-Wesley, 2003

9. Grigori, L., Demmel, J., and Li, X. Parallel Symbolic Factorization for Sparse LU Factorization
with Static Pivoting, in “Second International Workshop on Combinatorial Scientific
Computing”, Tolouse, France, June, 2005

10. Gropp, W., Lusk, E., and Skjellum, A., Using MPI: Portable Parallel Programming with the
Message-Passing Interface, The MIT Press, Cambridge, Massachusets, 1994

11. Lawson, C. L., Hanson, R. J., Kincaid, D. R., and Krogh F.T. Basic linear algebra subprograms
for FORTRAN usage, ACM Trans. Math. Soft., 5(3), 1979, pp. 308-323

12. Oancea, B. Parallel algorithms for mathematical models in economics, Ph.D. Thesis, ASE
Bucharest, December 2002.

13. Oancea, B., and Zota, R. The design and implementation of a dense parallel linear system
solver, in “Proceedings of the First Balkan Conference in Informatics, BCI’2003”,
Thessaloniki, Greece, 21-23 Nov. 2003

14. Oancea, B., and Zota, R. The Design and Implementation of a Parallel Linear System
Solver, in “RoEduNet International Conference, Second Edition”, Iassy, 5-6 June, 2003

15. Oancea, B. Implementation of Parallel Algorithms for Dense Matrix Computations, in
“Proceedings of the 7th International Conference on Informatics in Economy”, Bucharest,
May 2005

16. Saad, Y. Iterative methods for sparse linear systems, PWS Publishing Company, 1996

1 Bogdan Oancea is assistant professor at Artifex University from Bucharest. Since 2002 he has a PhD degree in
Cybernetics and Economic Statistics. His main research fields are parallel algorithms applied in mathematical
models in economy, geographical information systems and numerical computation. He wrote 6 textbooks in
operating systems, parallel computations and he is author of more than 60 papers published in scientific journals or
in different conference proceedings. He teaches "Electronic payment systems", "E-marketing" and "Introduction in
computer science" courses.

