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Abstract: Macroeconometric models with forward-looking variables give raise to very large 
systems of equations that requires heavy computations. These models was influenced by the 
development of new and efficient computational techniques and they are an interesting testing 
ground for the numerical methods addressed in this research. The most difficult problem in 
solving such models is to obtain the solution of the linear system that arises during the Newton 
step. For this purpose we have used both direct methods based on matrix factorization and 
nonstationary iterative methods, also called Krylov methods that provide an interesting 
alternative to the direct methods. In this paper we present performance results of both serial 
and parallel versions of the algorithms involved in solving these models. Although parallel 
implementation of the most dense linear algebra operations is a well understood process, the 
availability of general purpose, high performance parallel dense linear algebra libraries is 
limited by the complexity of implementation. This paper describes PLSS – (Parallel Linear 
System Solver) - a library which provides routines for linear system solving with an interface 
easy to use, that mirrors the natural description of  sequential linear algebra algorithms. 
 
Key words: parallel algorithms; linear algebra; macroeconometric models 
 

1. Introduction 
 
Macroeconometric models with forward-looking variables are a special class of 

models which generates large systems of equations. The clasical method used to solve such 
models is the extended path algorithm proposed by Fair and Taylor (Fisher, 1992). They use 
Gauss-Seidel iterations to solve the model, period after period, for a given time horizon. The 
convergence of this method depend on the order of the equations.  

In this paper we’ll take another approach – we’ll solve the system by the Newton 
method together with direct and iterative techniques that are well suited for large models. 
This approach was avoided in the past because it is computationally intensive. The new 
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techniques described in this paper shows that the Newton method is an interesting and cost-
effective alternative even for very large macroeconometric models.  

The advantages of the Newton method are its quadratic speed of convergence and 
some modifications leading to a global convergent behavior. The nonlinear model with 
rational expectations can be represented like this: 
 
hi(yt,yt-1, ... ,yt-r,yt+1|t-1, ... ,yt+h|t-1, zt)=0  i=1,... m (1) 
     
where yt+j|t-1 is the expectation of yt+j conditional on the information available at the end of 
the period t-1 and zt represents the exogenous and random variables. For consistent 
expectations, the forward expectations yt+j|t-1 have to coincide with the next period’s forecast 
when solving the model conditional on the information available at the end of period t-1. 
These expectations are therefore linked in time and solving the model for each yt conditional 
on some start period 0 requires each yt+j|0 for  j = 1,2, ... T-t and a terminal condition yT+j|0 j 
= 1,2 ..., h.  

Stacking up the these equations for successive time periods give rise to a large 
nonlinear system of equations. The Newton method for this model gives the following 
algorithm: 
 

 
The most computational intensive step in the Newton method is the linear system 

J(k)s(k) = b(k) when this system is very large. Direct methods for computing the solution of 
the system can be very expensive because of the computational cost  and high memory 
requirements. That’s why, high performance parallel algorithms are an efficient alternative 
to the classical serial algorithms.  

Another alternative to the serial direct methods are iterative methods that computes 
only an approximation of the solution. This does not influence the convergence of the 
Newton method.  

An important problem is to decide which level of precission for the solution of the 
linear system guarantees the rapid convergence of the Newton method at the lowest 
possible cost. To address this problem we define r(k) = b(k) – J(k)s(k) the residual for the 
approximate solution of the linear system at the kth Newton iteration. It can be shown that 
the Newton method is locally convergent if ||r(k)|| / ||b(k)|| is a sequence uniformly less 
than 1. 

Parallel versions for the iterative algorithms can also be developed quickly. 
 

2. Iterative and direct methods for linear systems 
 

Iterative methods 
An interesting alternative to the stationary iterative methods such as Jacobi or 

Gauss-Seidel are Krylov techniques. These techniques use information that changes from 

NEWTON Method 
Given an initial solution y(0) 
For k = 0,1,2, ... until convergence 
 Evaluate b(k) = - h(y(k),z) 
Evaluate J(k) = ∂h(y(k),z)/∂y’ 
Solve J(k)s(k) = b(k) 
y(k+1) = y(k) + s(k) 
end 
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iteration to iteration. For a linear system Ax = b Krylov methods compute the ith iterate x(i) 
as : 

 
x(i)=x(i-1)+delta(i)i = 1,2,... (2) 

 
The operations involved to compute the ith update delta(i) are only inner products, 

saxpy and matrix-vector products, all these beeing level 2 BLAS operations. This is a very 
good reason to use Krylov methods for very large systems. They are computational attractive 
comparatively with direct methods that use level 3 BLAS operations. 

 
The best known of the Krylov methods is the conjugate gradient (CG) method that 

solves symmetric positive definite systems. The main idea of the CG method is to update the 

iterates x(i) in a way to ensure the largest decrease of the objective function bxAxx ''
2
1

−  

while keeping the direction vectors delta(i) A-orthogonal. The implementation of this method 
uses only one matrix-vector multiplication per iteration. In exact arithmetic, the CG method 
yields the solution in at most n iterations. The complete description of the CG method can be 
found in (Golub, 1996). Another Krylov method implemented by the author of this paper is 
the BiConjugate Gradient (BiCG) method. BiCG takes a different approach based upon 
generating two mutually orthogonal sequence of residual vectors and A-orthogonal 
sequences of direction vectors. The updates for residuals and for the direction vectors are 
similar to those of the CG method, but are performed using A and its transpose. The 
disadvantages of the BiCG method are an erratic behavior of the norm of the residuals and 
potential breakdowns. An improved version that solves these disadvantages, called 
BiConjugate Gradient Stabilized (BiCGSTAB) is presented bellow: 

 
 
The BiCGSTAB method needs to compute 6 saxpy operations, 4 inner products and 

2 matrix-vector products per iteration The memory requirements are to store matrix A and 7 
vectors of size n.  

 
A very widely used Krylov method for general nonsymmetric systems is the 

Generalized Minimal Residuals (GMRES). The pseudo-code for GMRES is: 

BiCGSTAB  
Given an initial solution x(0) compute r = b – Ax(0) 
ρ0 = 1, ρ1 = r(0)’r(0), α = 1, ώ = 1, p = 0, v = 0 
for  k = 1,2, ...  until  convergence 
 β = (ρk/ ρk-1)(α/ώ) 
 p = r + β(p- ώv) 
 v = Ap 
 α = ρk/(r(0)’v) 
 s = r – αv 
 t = As 
 ώ = (t’s)(t’t) 
 x(k) = x(k-1) + αp + ώs 
 r = s – ώt 
 ρk+1 = - ώr(0)’t 
end 
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The main difficulty of the GMRES methods is not to lose the orthogonality of the 

direction vectors v(j). In order to do this the GMRES method uses a modified Gram-Schmidt 
orthogonalization process. GMRES requires the storage and computation of an increasing 
amount of information at each iteration: vectors v and matrix H . To overcome the increasing 
memory requirement, the method can be restarted after a chosen number of iterations m 
using the current intermediate results as a new starting point. 

The operation count per iteration cannot be used to directly compare the 
performance of BiCGSTAB with GMRES because GMRES converges in much less iterations 
than BiCGSTAB. 
 
Direct methods 

The direct solution for a linear system Ax = b takes two steps:  
• In the first step the classical decomposition A=LU is computed (L is a unit lower 

triangular matrix and U is an upper triangular matrix) 
• In the second step the two triangular systems Ux = y and Ly = b are solved by back 

substitution and forward elimination.   
For symmetric positive definite matrices the factorization is achieved by using the 

Cholesky decomposition A = LLT. A detailed description of the serial algorithms can be found 
in (Golub, 1996). 
 

3. Parallel algorithms for linear systems 
 

Software packages for solving linear systems have known many generations of 
evolution in the past 25 years. In ’70, LINPACK was the first portable linear system  solver 
package. At the end of ‘80 the next software package for linear algebra problems was 
LAPACK (Anderson, 1992) which, few years later, was adapted for parallel computation 
resulting the ScaLAPACK (Choi, 1992) library. Although parallel algorithms for linear systems 
are well understood, the availability of general purpose, high performance parallel dense 
linear algebra libraries is limited by the complexity of implementation. For the purpose of 
solving very large macroeconometric models we have developed a software package PLSS 
(Parallel Linear System Solver) that implements parallel algorithms for linear system solving. 
The PLSS library was designed with an easy to use interface, which is almost identical with 

GMRES 
Given an initial solution x(0) compute r = b – Ax(0) 
ρ = ||r||2, v(1) = r/ ρ, β = ρ 
for k = 1,2,... until convergence 
 for j = 1,2, ... k, 
   h(j,k) = (Av(k))’v(j)  
 end 

 v(k+1) = Av(k) - ∑ =

k

j
jvkjh

1
)(),(   

( Gram-Schmidt orthogonalization ) 
 h(k+1,k) = ||v(k+1)||2  
 v(k+1,k) = v(k+1)/h(k+1,k) 
end 
y(k) = argminy ||βe1 – H(k)y||2 
x(k) = x(0) + [v(1) ... v(k)] y(k) 
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the serial algorithms interface. This goal was obtained by means of data encapsulation in 
opaque objects that hide the complexity of data distribution and communication operations. 
The PLSS library was developed in C and for the communication between processors we 
used MPI library (Gropp, 1994) which is a “de facto” standard in message passing 
environments. The structure of the library is described in (Oancea, 2002),(Oancea, 2003). 
Here are the most important details about the internal structure of the library. 
 

 

Native BLAS 
library 

Native MPI 
library 

Standard C library 

The interface 
PLSS-BLAS  

The interface 
PLSS-MPI 

The interface PLSS-
Standard C library  

Data distribution level  

Object manipulation routines 

Application Program Interface – provides routines for 
parallel linear system solving 

Architecture dependent level 

Architecture independent level 

Data distribution  and 
encapsulation level 

API level  

Local BLAS routines  

 
Figure 1. The PLSS structure 

 
The first level contains the standard BLAS, MPI and C libraries. This level is 

architecture dependent. The second level provides the architecture independence. It 
implements the interface between the base level and the rest of the PLSS package. Using 
such an approach, the base libraries (BLAS, MPI) can be easily replaced without influencing 
the rest of the package. This interface has the following components: 

• BLAS-PLSS interface. Each processor uses the BLAS routines for local computations. 
Because BLAS library is written in FORTRAN, an interface is needed to call FORTRAN 
routines from C programs. 

• MPI-PLSS interface. PLSS uses the following communication operations: MPI_Bcast, 
MPI_gatherv, MPI_scaterv, MPI_Allgatherv, MPI_Allscatterv, MPI_Reduce,  
MPI_Allreduce, MPI_Send, MPI_Receive, MPI_Wait.  All these MPI operations are 
encapsulated in PLSS functions in order to decouple the PLSS from MPI.  

• PLSS-Standard C library interface. This interface encapsulates the standard C 
library functions (e.g. malloc, calloc, free) in PLSS functions.  

 
The next level implements the data distribution and encapsulation model. All details 

regarding distribution of vectors and matrices on local processors are placed at this level.  
Also at this level we can found data encapsulation in opaque objects, hiding the complexity 
of communication operations. This level defines: 

• Objects that describe vectors and matrices. 
• Object manipulation routines – object creation, destroying and addressing routines. 
• Local BLAS routines. Because matrices and vectors are encapsulated in objects, we 

must extract some information from these objects such as vector/matrix dimension, 
their localization etc, before calling a BLAS routine to perform some computations.  
Local BLAS routines extract these information and then call the standard BLAS 
routines.  
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• Communication functions – these functions implement the communication 
operations between processors.  
The top level of the PLSS library is the application program interface. PLSS API 

provides a number of routines that implements parallel BLAS operations and parallel linear 
system solving operations based on LU and Cholesky matrix factorization.   

The PLSS library uses a bidimensional mesh of processors. We have chosen this 
model of processor interconnection based on scalability studies of matrix factorization 
algorithms (Grama, 2003, Oancea, 2002). For a linear system Ax = b, vectors x and b are 
distributed on processors in a block column cyclic model and the system matrix A is 
distributed according to the vector distribution – the column A*,j will be assigned to the same 
processor as xj.  

Here are some examples of parallel implementation of some basic operations in 
the PLSS package. One of the most used operation in linear system solving is matrix-vector 
multiplication: Ax = y. Figure 2 shows the necessary steps to implement parallel matrix-
vector multiplication. The matrix in this example has 8 rows and 8 columns. 
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Figure 2. Matrix-Vector multiplication procedure 
 

In the first step (Figure. 2a) the vector components are distributed on the processors 
columns. After vector distribution it follows a step consisting of local matrix-vector 
multiplications (Figure. 2b).  At this moment each processor owns a part of the final result 
(Figure. 2c). In the last step, these partial components are summed up along the processor 
rows (Figure. 2d).  

Another frequently used basic operation is rank-1 update. It consists in the 
following computation:  A = A + yxt.  

Assuming that x and y have identical distributions on processor columns and rows, 
each processor has the data needed to perform the local computations.  
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These two basic operations, matrix-vector multiplication and rank-1 update can be 
used in order to derive a parallel algorithm for matrix-matrix multiplication. It is easy to 
observe that the product C = AB can be decomposed in a number of rank-1 updates: 
  
C = a0b0

t + a1b1
t + … + an-1bn-1

t (4) 
where ai are the columns of matrix A and bi

t are the rows of matrix B.  
Parallelization of matrix-matrix multiplication is equivalent with parallelization of a 

sequence of rank-1 updates. In order to obtain an increase in performance, the rank-1 
update can be replaced with rank-k update, but in this case x and y will be rectangular 
matrices. We conclude this section with the implementation of the block Cholesky 
factorization. Cholesky factorization consists in finding the factorization of the form A = LLT 
where A is a symmetric positive definite matrix. Figure 3 shows the partitioning of matrices A 
and L. 

   A_11    * 
A =   
   A_21 A_22 
 
 
 
   L_11    0 
L =   
   L_21 L_22 

 
Figure 3. The partitioning of matrices A and L 

 
From A = LLT  we can derive the following equations : 

 A11 = L11L11
T (5) 

L21L11
T = A21 (6) 

A22 – L21L21
T = L22L22

T (7) 
 

If matrix L will overwrite the inferior triangle of A, then the Cholesky factorization 
consists in the following three computations:  

 
A11 ← L11 =  Cholesky(A11) (8) 
A21 ← L21 = A21L21

-T (9) 
A22 ← A22 –L21L21

T (10) 
 

The dimension of matrix block A11 is computed such that A11 will be stored on only 
one processor and the factorization from equation (8) will be a local operation. Under these 
conditions A21 is stored on the same column of processors and L11 will be distributed to these 
processors. The parallel Cholesky factorization can be described as follows: 

1. Determine the block size such that A11 is stored on a single processor. 
2. Split matrix A into blocks A11, A21, A_22 according to the block size computed in step 

1. 
3. Compute the Cholesky factorization of submatrix A11 – this is a local operation. 
4. Distribute A11 on the column of processors. 
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5. Solve the triangular system given by equation (9) – this is a local operation because 
A11 was distributed in the pervious step to all processors that participate in this 
computation. 

6. Compute the symmetric rank-k update given by equation (10). 
7. Recursive apply the same steps to matrix A22. 

 

4. Experimental results 
 

We have conducted performance experiments with both serial and parallel versions 
of the algorithms for two iterative methods – GMRES(40) and BiCGSTAB and with the direct 
method that consists in matrix factorization. For our experiments we have considered 
nonlinear systems with the number of variables between 10000 and 38000. The tolerance 
for the solution was fixed at 10-4 for all methods. The serial algorithms are implemented 
using the C++ programming language under the Linux operating system. Both iterative 
methods behave relatively well for our problems but BiCGSTAB is less expensive in number 
of floating point operations and memory requirements. Table 1 shows the number of floating 
point operations per iteration for each Newton variant to converge and the amount of 
memory needed. 
 

Table 1. The number of MFLOP/iteration and memory requirements 

GMRES(40) BiCGSTAB Matrix 
dimension MFLOP Memory (Mb) MFLOP Memory (Mb) 

10000 2100 3.12 723 1.24 
14000 4800 4.92 2880 1.88 
18000 14100 6.31 12800 3.12 
22000 29500 8.23 27500 3.66 
26000 58000 8.99 52000 4.99 
30000 125000 12.11 112000 5.82 
34000 140000 12.55 120000 8.02 
38000 200000 15.02 175000 8.82 
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Figure 4. The number of floating point operations per iteration 
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Figure 5. Memory requirement per iteration 

 
These results show that the iterative methods can be a good alternative to direct 

methods for very large systems of equations. 
Parallel versions of the algorithms were executed on a cluster of workstations, 

connected through a 100Mb Ethernet local network, each station with 1GB of main memory. 
We have tested the PLSS package for both iterative and direct methods, for 1, 2, 4, 8, and 
16 processors. The dimension of the matrix was maintained fixed with 22000 rows and 
columns. Figure 6(a) shows the speedup of the parallel algorithms in the case when iterative 
methods are used for solving the model and figure 6(b) shows the speedup in the case of 
using the direct methods. It can be observed that the direct method has a better speedup the 
the iterative ones. 
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a) Parallel iterative methods 
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b) Direct method (LU factorization) 

Figure 6. The speed-up for parallel versions of the algorithms 
 

5. Conclusion 
 

In this paper we have described algorithms for solving macroeconometric models 
with forward-looking variables based on the Newton method for nonlinear systems of 
equations. The most computational intensive step in the Newton method consists in solving a 
large linear system at each iteration. We have compared the performance of solving this 
linear system for two iterative methods – GMRES(40) and BiCGSTAB and the direct method 
based on matrix factorization.  

For serial algorithms, iterative Krylov methods proved to be an interesting 
alternative to exact Newton method with LU factorization for large systems. Both the 
computational cost and  memory requirements are inferior in the case of iterative Krylov 
methods compared with LU factorization.  

We have developed a library (PLSS - Parallel Linear System Solver) that implements 
parallel algorithms for linear system solving. Because of the complexity of parallel algorithms 
it is difficult to design an easy to use parallel linear system solver. The PLSS infrastructure 
was designed to provide users a simple interface, close to the description of the serial 
algorithms. This goal was achieved through data encapsulation, hiding the complexity of 
data distribution and communication operations from users. PLSS was developed in C using 
MPI and can be run on many different kinds of parallel computers – it can be run on real 
parallel computers as well as on simple cluster of workstations 

Comparing the performance of the parallel algorithms, LU factorization showed a 
better scalability then the iterative methods because the iterative algorithms involve a global 
communication step at the end of each iteration. This communication step slows down the 
overall execution of the program. 
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