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Abstract: The major objective of this study was to investigate the effects of non-normality on 
Type III error rates for ANOVA F its three commonly recommended parametric counterparts 
namely Welch, Brown-Forsythe, and Alexander-Govern test. Therefore these tests were 
compared in terms of Type III error rates across the variety of population distributions, mean 
difference (effect size), and sample sizes. At the end of 100,000 simulation trials it was 
observed that the Type III error rates for four tests were affected by the effect size (δ) and 
sample size, whereas Type III errors were not affected from distribution shapes. Results of the 
simulation also indicated that increases in sample size and population mean difference 
decreased Type III error, and increased statistical test power. Across the all distributions, 
sample sizes and population mean differences (δ), the Alexander-Govern test obtained higher 
estimates for power, lower estimates of Type III error (γ). 
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1. Introduction 
 

There are variety of alternatives to ANOVA F test under non-normality and 
homogeneity of variance. Among the most frequently cited parametric alternatives to 
ANOVA are Welch test, James second-order test, Marascuilo test, Brown-Forsythe test, K-
statistic, Wilcox Hm test, Alexander-Govern test, trimmed mean (Welch, 1951; Brown and 
Forsythe, 1974; Alexander and Govern, 1994; Mehrota, 1997; Keselman, et al., 2002; 
Mendeş, 2002; Camdeviren and Mendes, 2005). Most of the studies related to test power 
were considered Type I and Type II error rates, however a third type of error has been 
suggested in the literature (Leventhal and Huynh, 1996; Leventhal 1999; MacDonald, 1999). 
Previous studies have investigated, in general, the power and Type I error rates for ANOVA F 
test and its various alternatives across variety of population distributions, variance patterns, 
sample sizes, and effect sizes (δ). Unfortunately in practice, Type III error is not taken into 
consideration. To date, the studies of the error rates control in statistical tests have not 
examined the probability of rejection in the wrong direction for ANOVA F test and its 
parametric alternatives when mean differences (effect size) exist. However, Type III error 
affects test power especially when sample sizes are small (Leventhal and Huynh, 1996; 
Leventhal 1999; MacDonald, 1999; Mendes, 2004). 
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The authors of previous studies have explicitly state that the tests for statistical 
significance would be two tailed. It is known that in a two-tailed hypothesis test, rejection of 
the null hypothesis means that the groups tested do not come from populations with a 
common μ. However, this information does not give an idea about the direction of the 
difference since conventional two-tailed tests evaluate non-directional statistical hypotheses 
and do not provide directional decisions (Shaffer 1972, Leventhal and Huynh, 1996; Finner, 
1999). Recently, Leventhal and Huynh (1996), Leventhal (1999), Jones and Tukey (2000) 
have reviewed interest in the directional two-tailed t test, in part because, these authors 
maintain, knowing the null hypothesis is false implies that one of the alternative hypothesis 
is true, but not which true. The directional two-tailed test makes its contribution by telling us 
which directional alternative to accept (Leventhal, 1999, page 6). Camdeviren and Mendes 
(2005) had a simulation study for Type III error rates of some variance homogeneity tests 

The power of a test is traditionally defined as the probability of rejecting a false null 
hypothesis (Cohen, 1988; Zar, 1999; Ferron and Sentovich, 2002). But, this definition is not 
always appropriate. Leventhal and Huyhn (1996) suggested that power can be defined as 
the probability of correctly rejecting a false null hypothesis and can be calculated as 
Power=1-β-γ. Type III error (γ) refers to correctly rejecting the null hypothesis, but incorrectly 
inferring the direction of the effect. Directional decisions on non-directional tests will 
overestimate power, underestimate sample size, and ignore the risk of Type III error under 
the definition of Leventhal and Huyhn (1996). By studying the Type III error rates for tests, 
one can evaluate, empirically, relative merits of using the statistical tests to analyze data. 
Correction of the power value adjusted to the Type III error rate is much lower than the 
power value classically calculated, especially in small samples (Muller and Lavange, 1992; 
Sansgiry and Akman, 2000).  

For instance, if true mean differences exist between population A and population B, 
or among population A, population B, and population C on some measures of interest (e.g., 

for two populations BA μμ 〉  , and for three populations 
CA

A

μμ
Bμμ

>

>
 ), it would be possible for 

a researcher to commit two types of errors: 
a) Type II error, which is the acceptance of a false null hypothesis with the conditional 
probability β.  
b) Type III error, which is the rejection of a false null hypothesis with the conditional 
probability of γ and concluding a mean difference in the wrong direction (e.g., for two 

populations BA μμ < , and for three populations
CA

A

μμ
Bμμ

<

<
). 

Note that we are only considering the case where one mean Aμ differs from the 

rest as opposed to general departure from equality when there are more than two groups.  
These two types of errors directly affect the power of a test. Under this definition of power, 
the probability of making a Type III error must be eliminated (Leventhal and Huyhn, 1996; 
Sharon and Carpenter 1999) for calculations of power and sample size. If the direction of an 
effect is known, results will be more informative.  

Another way to understand the directional two-tailed test is to view it as a single 
test evaluating three statistical hypotheses: H0, H1, and H2. When testing the difference 
between two sample means, the hypotheses are 
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210 μμ:H = ,   211 μμ:H <  and 211 μμ:H >  

Where H0 is the null hypothesis, H1, and H2 are the alternative hypotheses.  
 
Table 1. Relationship of the “Truth” and the decision about null hypothesis 

Nature Decision 
 H1 true H0 true H2 true 
H1 
accept 

Correct decision Type I error (α) Type III error ( γ ) 

H0 
accept 

Type II error (β) Correct decision Type II error (β) 

Decision 
about 
nature 

H2 
accept 

Type III error ( γ ) Type I error (α) Correct decision 

 
Therefore, Type III error ( γ ) is only possible only when H1 or H2 is true. Two cells, 

accept H2 when H1 true and accept H1 when H2 true make different type of this error. There 
is no Type III error if null hypothesis is accepts. It can be seen that the non-directional two-
tailed test does not provide for a directional decision and, hence cannot make a Type III 
error. Schaffer (1972) notified that a one-tailed test could make a Type III error by accepting 
directional alternative when the truth falls in the opposite direction. Therefore, in power 
studies, accordingly, with the revisited definition, the three-choice test’s power is Power=1- 
�- γ for a given state of nature.  

In the simplest case, two groups with equal variance; the Type III error rate can be 

analytically derived from the non-central t distribution.  The difference in means BA XX −  

has standard error /nS 2 2  for two samples of size n so if 0t  is the left tail critical value for 

example, the probability of rejecting for a given δ becomes  

}t
/nS 2

_
X

_
X

Pr{ 02

BA
<

−
= }t

/nS 2

δσμ)
_
X(δσ)μ

_
X(

Pr{ 02

BA
<

+−−−−
= }t

/σS

n/2δZ
Pr{ 022

<
+

 

Where 
/n2σ

μ)
_
X(δσ)μ

_
X(

Z
2

BA −−−−
= .   

This probability can be computed from the non-central t distribution with non-

centrality parameter n/2δ .   
The major objective of this study is to investigate the effects of non-normality on 

Type III error for ANOVA F, Welch, Brown-Forsythe, and Alexander-Govern tests.  
 
1.1. Definition of Statistical Tests 

Let ikX be the ith observation in the kth group. Where i=... kn and k=1...K; let ∑ = Nn k . The 

ikX ’s are assumed to be independent and normally distributed with expected values kμ and 

variances 2
kσ . The best linear unbiased estimates of kμ and 2

kσ are 

k

ik
.k n

X
X

∑
=  and 

( )
( )1n

XX
S

k

2
.kik

2
k −

∑ −
=  respectively. 



  
Quantitative Methods Inquires 

 
447 

1.1.1. ANOVA F Test: 

∑∑ −

−−∑
=

i k kk

2
..kk k

K)-(N/).Xi(X

1)(K/)X.X(n
F  [1] 

Where 
N

Xn
X k .kk

..

∑
= , when population variances are equal. F is distributed as a central F 

variable with (K-1) and (N-K) degrees of freedom. 
1.1.2. Welch Test  

The test statistic for this test is 

⎥⎦
⎤

⎢⎣
⎡

−+

∑ −−
=

2)Λ(K
3

2
1

1)(K/ )XX(W
F k

2'
...kk

w  [2] 

Where 2
k

k
k S

n
W = ,  

∑

∑
=

k k

k kk'
.. W

.XW
X  and �

1)(K

)1(n/)W/W(13

2
k k k

2
kk

−

∑ ∑ −−
=  Fw statistic is 

approximately distributed as a central F variable with (K-1) and 1/∧ degrees of freedom.  
 
1.1.3. Brown-Forsythe Test 
Mehrota (1997) developed the following test 

∑ −

∑ −
=

k

2
kk

k

2
kk

BF
S N) / n(1

)X.X(n
F  [3] 

In attempt to correct a “flaw” in the original Brown-Forsythe test. The “flaw” in the 
Brown-Forsythe testing procedure, as identified by Mehrota (1997), is the specification of the 
numerator degrees of freedom. In this study, Brown-Forsythe method proposes by Mehrota 
(1997) was used instead of the usual Brown-Forsythe method. Specially, Brown-Forsythe 
used K-1 numerator degrees of freedom whereas Mehrota (1997) used a Box (1954) 
approximation to obtain the numerator degrees of freedom, v1, where 

∑ ∑−∑+

∑ −
=

= ==

=

⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡

K

1i

K

1i
 

4
ii

2K

i
 

2
ii

4
i

2K

1i

2
ii

N/ Sn2.
1

N/ SnS

S N) / n(1

1v  [4] 

and the denominator degrees of freedom;  
∑ −−

∑ −
=

=

= ⎥⎦
⎤
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K

1i i 
4
i

2
i
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Under null hypothesis, FBF is distributed approximately as an F variable with v1 and v 
degrees of freedom (Mehrota, 1997). 
 
1.1.4. Alexander-Govern Test 

The test statistic for this test is ∑=
=

K

k

2
k1

ZAG  [6] 
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Where 
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855)240c33c(4c

b

3c)(c
cZ 42

3573

k
++

+++
−

+
+=  

0.5va k −= ,   248ab = ,      )
v

t
(1ln *ac

k

2
k+= ,  

k

k
k

XS

XX
t

+−
=  ,  

∑=
=

+ K

1k kk XWX , and 1nv kk −= . 

AG statistic is approximately distributed as a chi-square distribution with (K-1) 
degrees of freedom (Alexander and Govern, 1994; Schneider and Penfield, 1997). 
 

2. Material and Methods 
 
Table 1. The characteristics of the distributions 

Distributions Mean Variance Skewness Kurtosis 

Normal (0, 1) 0.00 1.00 0.00 3.00 

t (5) 0.00 1.67 0.00 6.00 

χ2 (3) 3.00 6.00 1.63 4.00 

β (10, 10) 0.50 0.01 -0.001 -0.27 

Exp (1.25) 1.25 1.60 2.00 6.08 

W (1.5, 1) 0.92 0.37 1.07 1.38 

N (0, 1): standard norlma dist., t (5): t-dist. with 5 df.,      χ2 (3): Chi-square dist. with 3 df.   
β (10, 10): Beta dist. with (10, 10) parameters,    Exp (1.25): Exponential dist. with (1.25) 
parameter 
W (1.5, 1): Weibull dist. with (1.5, 1) parameters 

A computer simulation program was used Monte Carlo techniques to investigate 
the effects of non-normality on Type III error rates of ANOVA F and its three commonly 
recommended parametric alternatives across a variety of experimental conditions. The error 
rates of four tests were evaluated under six different population shapes (Normal (0, 1), t-
distribution with 5 df, chi-square with 3 df, Exponential (1.25), Beta (10, 10), and Weibull 

(1.5, 1) and seven sample-size pairings ( 321 n,n,n ) of (5, 5, 5), (10, 10, 10), (20, 20, 20), 

(30, 30, 30), (3, 4, 5), (5, 10, 15), and (10, 20, 30). Those distributions were selected since 
those distributions are predominantly used in literature (Alexander and Govern, 1994; 
Wilcox, 1994; Penfield, 1994; Keselman et al., 2002; Mendeş, 2002). Distributions were 
generated using random number generators from IMSL (functions RNNOA, RNSST, RNCHI, 
RNEXP, RNBET, and RNWIB) (Anonymous, 1994). Sawilowsky and Blair (1992) investigated 
effects of eight non-normal distributions, which were identified by Micceri (1989) on the 
robustness of Student’s t test, and they found that only the distributions with the most 
extreme degree of skewness (e.g., skewness=1.64) affected Type I error control of the 
independent sample t statistics. In this study, maximum degree of skewness used was 2.00. 
In this study, only small sample size conditions were taken into consideration. Because in 
practice, researchers were studied with small sample sizes. The effects of Type III error on 
test power were more obvious, especially when sample sizes were small (MacDonald, 1999; 
Mendeş, 2004).  
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The populations were standardized because they have different means and 
variances. Shape of distributions was not changed while the means were changed to 0 and 
the standard deviations were changed to 1. The effect sizes (standardized mean differences 
(δ) of 0.8 and more standard deviation approximate those suggested by Cohen (1988) to 
represent large effect sizes. In this study, we used (0.25) standard deviation to represent 
small effect size, (0.75) standard deviation to represent medium effect size, and (1.0) 
standard deviation to represent large effect size. To make a difference between the 
population means in which generated samples were taken from, specific constant numbers 
in standard deviation form (δ=0.25, 0.75, 1.0) were added to the random numbers of the 
first population. We have done computations for many other parameter values as well; since 
the results are quite similar, for saving printing space, other results will not be given here. 
100,000 runs were generated for each distribution and each given set of parameter values 
and frequencies of samples for the rejection regions were counted for the ANOVA F test, the 
Welch test, the Brown-Forsythe test, and the Alexander-Govern test. That is, for each pair of 
samples, ANOVA F (F), Welch (W), Brown-Forsythe (BF), and Alexander-Govern (AG) test 
statistics were calculated (for the F test we compute F and count the frequency satisfying F > 
F (k-1, N-k-1) d.f, for the Welch test we compute FW values and count the frequency 
satisfying FW  > F (k-1, 1/∧) d.f, for Brown-Forsythe test, we compute FBF and count the 
frequency satisfying FBF > F (v1, v) d.f., and for Alexander-Govern test we compute AG and 
count the frequency satisfying AG > χ2 (k-1) and a check was made to see if the hypothesis 
which is actually true was rejected and which is actually false was rejected at α=0.05. The 
experiment was repeated 100,000 times and the proportion of observations falling in the 
critical regions was recorded. This proportion estimation is test power if the means from the 

populations do differ ( 21 μμ ≠ ). Type III error rate was obtained by counting how many times 

the highest mean population in real is smaller than the other population means (r1) in the 
rejected sum of hypothesis and transforming this number into relative frequency  (γ=r1 / 
100,000). That is, Type III (rejection of a false null hypothesis in the wrong direction) error 
rates were computed for conditions in which the null hypothesis was false. We wrote a 
FORTRAN program for Intel Pentium III processor to compute all tests. 
 

3. Results and Discussion 
 

The results are presented in Tablo 2-7. Table 2 contains the Type III error rates of 
four tests when distributions were normal. Across all sample sizes, the estimates of Type III 
error rates for W test ranged from 1.00 % to 1.52 % under small effect size (0.25), ranged 
from 0.09% to 0.80% under medium effect size (0.75), and ranged from 0.00% to 0.48% 
under large effect size (1.00). The estimates of Type III error rates for BF test ranged from 
0.89% to 1.48% under small effect size (0.25), ranged from 0.09 % to 0.70 % under medium 
effect size (0.75), and ranged from 0.00% to 0.70% under large effect size (1.00). Under the 
same conditions, the estimates of Type III error rates for AG test ranged from 0.13% to 
0.64%, from 0.05% to 0.26%, and from 0.00% to 0.17%, respectively, whereas the Type III 
error estimates for F test ranged from 1.31% to 2.20%, from 0.11% to 1.35%, and from 
0.00% to 0.72% respectively. That result demonstrated that the alternative tests were more 
robust than the F test at controlling the probability of Type III error rates. On the other hand, 
it can be said that AG test is more robust than the others at controlling the probability of 
Type III error. As we expected, probability of a rejection in the wrong direction decreased as 
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sample size and population mean differences increased. It was also seen that the effects of 
small sample sizes on Type III error is more pronounced. Leventhal and Huynh (1996) 
reported that the Type III error rate always less than 0,5α.  Therefore, the difference between 
the tests is always less than 0,5α when two group means was compared. Similarly, Sarkar et 
al. (2002) stated that the chance of Type III error is less than that of Type I error (α). Results 
of this study are consistent with the reporting Leventhal and Huynh (1996), Sarkar et al. 
(2002), and the findings reported by MacDonald (1999) and Mendes (2004). However, 
nothing has been reported for the comparison of more than two group means.  
Neverlethess, Type III error rate might be found more than 0.5α under some experimental 
conditions. The reason for that might be the distribution shape, number of groups, variance 
ratio, and the relationship between the sample size and group variances (direct and inverse 
pairing).  

When samples were drawn from three t (5) distributions, Type III error was higher 
for F test than that for W, BF, and AG test (Table 3). And, this was more obvious in small 
sample sizes and effect size (0.25). The Type III error rate was affected by total sample sizes 
rather than inequality in sample sizes. Under the same experimental conditions, when δ was 
1.0, it was seen that the Type III error rate for F, W, BF, and AG test was found to be 0.94%, 
0.65%, 0.56%, and 0.20% respectively, even if sample sizes were 5. Under this distribution, 
AG test is still superior to the others. 

It can be seen that table 3, table 4, and table 6 gave similar results. Therefore, it 
can be said that the effects of t (5), χ2 (3), and exponential (1.25) distributions on Type III 
error rates for all tests were similar. At he same time, the effect of table 2 and table 5 on 
Type III error were similar too.  

When samples were drawn from three Weibull (1.5, 1) distributions, across all 
sample sizes, the estimates of Type III error rates for W test ranged from 1.02% to 1.43% for 
δ=0.25, ranged from 0.10% to 1.06% for δ=0.75, and ranged from 0.00% to 0.78% for 
δ=1.00. The estimates of Type III error rates for BF test ranged from 0.86% to 1.48% for 
δ=0.25, ranged from 0.10% to 0.88% for δ=0.75, and ranged from 0.00% to 0.61% for 
δ=1.00. Under the same conditions, the estimates of Type III error rates for AG test ranged 
from 0.24% to 0.83%, from 0.08% to 0.50%, and from 0.00% to 0.32%, respectively, 
whereas the Type III error estimates for F test ranged from 1.36% to 2.14%, from 0.10% to 
1.40%, and from 0.00% to 1.02% respectively (Table 7). It can be seen that the results of 
Table 7 were similar to the results of the Table 2 and Table 5.  

When Table 2-7 evaluated together, the superiority of the AG test can be seen for all 
distributions and sample sizes. Because, across the all distributions, sample sizes and 
population mean differences (δ), the AG test obtained higher estimates for power, lower 
estimates of Type III error (γ). Therefore, revisited version of test power of the AG test, 
Power=1- β- γ, will be higher than the others. Power of F test is smaller than the alternatives 
in general. Because, Type III error rates for F test were higher than W, BF, and AG test in 
general. On the other hand, simulation results suggested that Type III error rates for tests 
were not affected from distribution shape.  
 

4.Implication 
 
The results of the present simulation of the Type III error rates of the ANOVA F and 

its three commonly recommended parametric alternatives indicate that the AG test provides 



  
Quantitative Methods Inquires 

 
451 

a considerable advantage over the F, W, and BF test in all experimental conditions. Because, 
in almost every experimental situation, the Type III error rates were lower for the AG test and 
the power of the AG test was higher than the others in many cases. On the other hand, 
simulation results indicated that the deviation from normality was not affect the Type III error 
even if distributions were exponential (1.25). 

 
 

Table 2. Type III error (%) for different statistics when data are simulated from three Normal 

( 2
ii σ,μ ) distributions based on 100,000 simulations; α=0.05 

 
321 μ:μ:μ =0:0:0.25 321 μ:μ:μ =0:0:0.75 321 μ:μ:μ =0:0:1.0 

 F W BF AG F W BF AG F W BF AG 

5:5:5 2.20 1.51 1.33 0.48 1.12 0.80 0.70 0.22 0.72 0.48 0.43 0.17 

10:10:10 1.88 1.52 1.48 0.64 0.66 0.51 0.49 0.26 0.31 0.27 0.26 0.12 

20:20:20 1.51 1.19 1.19 0.60 0.27 0.23 0.23 0.12 0.04 0.03 0.03 0.01 

30:30:30 1.31 1.00 1.00 0.58 0.11 0.09 0.09 0.05 0.00 0.00 0.00 0.00 

3:4:5 2.15 1.12 0.89 0.13 1.35 0.72 0.54 0.11 0.72 0.35 0.29 0.07 

5:10:15 1.73 1.07 0.92 0.26 0.59 0.37 0.31 0.13 0.32 0.26 0.22 0.06 

10:20:30 1.42 1.12 1.02 0.36 0.28 0.23 0.20 0.11 0.12 0.10 0.08 0.04 

 
Table 3. Type III error (%) for different statistics when data are simulated from three t (5) 

distributions based on 100,000 simulations; α=0.05 

 
321 μ:μ:μ =0:0:0.25 321 μ:μ:μ =0:0:0.75 321 μ:μ:μ =0:0:1.0 

 F W BF AG F W BF AG F W BF AG 

5:5:5 1.96 1.19 1.04 0.31 1.12 0.62 0.55 0.17 0.94 0.65 0.56 0.20 

10:10:10 1.79 1.41 1.36 0.55 0.95 0.74 0.70 0.33 0.60 0.49 0.47 0.24 

20:20:20 1.61 1.25 1.23 0.50 0.55 0.48 0.48 0.25 0.17 0.14 0.14 0.10 

30:30:30 1.47 1.20 1.10 0.45 0.35 0.31 0.30 0.17 0.04 0.02 0.01 0.00 

3:4:5 2.13 1.03 0.81 0.19 1.26 0.55 0.48 0.08 0.83 0.45 0.31 0.09 

5:10:15 1.69 0.93 0.85 0.23 0.93 0.56 0.49 0.17 0.45 0.31 0.24 0.04 

10:20:30 1.56 1.07 0.98 0.34 0.55 0.42 0.40 0.14 0.21 0.17 0.14 0.04 

 
Table 4. Type III error (%) for different statistics when data are simulated from three Chi (3) 

distributions based on 100,000 simulations; α=0.05 

 
321 μ:μ:μ =0:0:0.25 321 μ:μ:μ =0:0:0.75 321 μ:μ:μ =0:0:1.0 

 F W BF AG F W BF AG F W BF AG 

5:5:5 1.88 1.14 0.90 0.26 1.22 0.98 0.71 0.31 0.88 0.74 0.54 0.30 

10:10:10 1.66 1.23 1.09 0.62 0.80 0.74 0.64 0.49 0.51 0.49 0.45 0.35 

20:20:20 1.70 1.40 1.33 0.87 0.41 0.40 0.38 0.35 0.11 0.11 0.10 0.05 

30:30:30 1.60 1.37 1.33 0.95 0.15 0.13 0.13 0.09 0.00 0.00 0.00 0.00 

3:4:5 1.72 0.88 0.65 0.08 1.26 0.69 0.58 0.15 0.77 0.49 0.33 0.15 

5:10:15 1.39 0.85 0.77 0.31 0.66 0.49 0.49 0.22 0.47 0.31 0.20 0.08 

10:20:30 1.40 1.03 1.01 0.47 0.37 0.35 0.35 0.22 0.08 0.06 0.06 0.02 
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Table 5. Type III error (%) for different statistics when data are simulated from three Beta 
(10, 10) distributions based on 100,000 simulations; α=0.05 

 
321 μ:μ:μ =0:0:0.25 321 μ:μ:μ =0:0:0.75 321 μ:μ:μ =0:0:1.0 

 F W BF AG F W BF AG F W BF AG 

5:5:5 2.22 1.55 1.38 0.50 1.10 0.71 0.62 0.24 0.84 0.60 0.53 0.21 

10:10:10 1.79 1.40 1.36 0.51 0.72 0.57 0.56 0.26 0.30 0.24 0.24 0.11 

20:20:20 1.40 1.16 1.15 0.51 0.34 0.32 0.32 0.21 0.03 0.03 0.03 0.01 

30:30:30 1.36 1.20 1.20 0.58 0.08 0.07 0.07 0.04 0.00 0.00 0.00 0.00 

3:4:5 2.37 1.30 1.06 0.26 1.28 0.79 0.64 0.16 0.73 0.40 0.33 0.10 

5:10:15 1.75 1.15 1.01 0.31 0.66 0.44 0.34 0.09 0.34 0.22 0.20 0.03 

10:20:30 1.48 1.18 1.10 0.48 0.31 0.24 0.22 0.10 0.08 0.07 0.06 0.04 

 
Table 6. Type III error (%) for different statistics when data are simulated from three 

Exponential (1.25) distributions based on 100,000 simulations; α=0.05 

 
321 μ:μ:μ =0:0:0.25 321 μ:μ:μ =0:0:0.75 321 μ:μ:μ =0:0:1.0 

 F W BF AG F W BF AG F W BF AG 

5:5:5 1.71 1.07 0.76 0.18 1.21 0.97 0.61 0.29 0.94 0.83 0.47 0.28 

10:10:10 1.69 1.19 0.99 0.59 0.88 0.83 0.64 0.51 0.43 0.43 0.36 0.30 

20:20:20 1.53 1.22 1.14 0.80 0.46 0.44 0.42 0.36 0.10 0.10 0.09 0.09 

30:30:30 1.50 1.33 1.31 0.95 0.19 0.19 0.19 0.18 0.02 0.01 0.02 0.00 

3:4:5 1.57 0.66 0.54 0.10 0.94 0.60 0.42 0.12 0.81 0.63 0.47 0.17 

5:10:15 1.30 0.75 0.70 0.13 0.71 0.57 0.54 0.28 0.40 0.37 0.36 0.28 

10:20:30 1.20 0.81 0.79 0.32 0.38 0.37 0.37 0.25 0.12 0.10 0.10 0.06 

 
Table 7. Type III error (%) for different statistics when data are simulated from three Weibull 
(1.5, 1) distributions based on 100,000 simulations; α=0.05 

 
321 μ:μ:μ =0:0:0.25 321 μ:μ:μ =0:0:0.75 321 μ:μ:μ =0:0:1.0 

 F W BF AG F W BF AG F W BF AG 

5:5:5 2.14 1.43 1.15 0.40 1.40 1.06 0.88 0.28 1.02 0.78 0.61 0.29 

10:10:10 1.79 1.34 1.26 0.64 0.91 0.81 0.74 0.50 0.51 0.46 0.44 0.32 

20:20:20 1.75 1.51 1.48 0.83 0.30 0.29 0.28 0.20 0.03 0.02 0.02 0.00 

30:30:30 1.58 1.40 1.39 0.81 0.10 0.10 0.10 0.08 0.00 0.00 0.00 0.00 

3:4:5 1.94 1.02 0.86 0.24 1.35 0.75 0.62 0.13 1.04 0.67 0.55 0.14 

5:10:15 1.66 1.06 0.96 0.27 0.81 0.55 0.54 0.24 0.37 0.31 0.30 0.13 

10:20:30 1.38 1.04 0.99 0.39 0.44 0.40 0.40 0.20 0.09 0.08 0.08 0.03 
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