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1. Introduction 

 
This article is organized in the following way: Section 2 propose an overview of 

proportional transaction costs model; in Section 3 we consider the possibilistic  theory 
proposed by Zadeh [15]2 and we present the rate of return on security given by a trapezoidal 
fuzzy number; in Section 4, we stated the weighted possibilistic mean variance and 
covariance of fuzzy numbers. Thus are extended some recently results in this field [8,12,15].  
 

2. The proportional transaction costs model 
 

Transaction cost is one of the main sources of concern to managers see [1, 16]. 
Assume the rate of transaction cost of security j (j=1,.., n) and allocation  of  i (i 

=1,…, k) assets is jic , thus the transaction cost of security j and allocation of i assets is 

jji xc . The transaction cost of portfolio ),...,( 1 nxxx = is kixc
n

j
jji ,...,1,

1
=∑

=

. Considering the 

proportional transaction cost and the shortfall probability constraints, we purpose the 
following mean VaR portfolio selection model with transaction costs [14]: 
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Subject to iii VaRv β≤< })(Pr{ , ki ,...,1= , (2.2) 
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1, (2.3) 

 

njMxM jjj ,...,1,21 =≤≤ . (2.4) 

 

3. Triangular and trapezoidal fuzzy numbers 
 

We consider the possibilistic  theory proposed by Zadeh [15]. Let a~  and b~  be two 

fuzzy numbers with membership functions a~μ  and b~μ respectively. The possibility operator 

(Pos) is defined in [12]. 
Let the rate of return on security given by a trapezoidal fuzzy number 

),,,(~
4321 rrrrr =  where 4321 rrrr <≤< . Then the membership function of the fuzzy number 

r~ can be denoted by: 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤≤
−
−

≤≤

≤≤
−
−

=

.,0

,

,,1

,,

)(
,43

43

4

32

21
12

1

otherwise

rxr
rr
rx

rxr

rxr
rr
rx

xμ       (3.1) 

We mention that trapezoidal fuzzy number is triangular fuzzy number if  32 rr = . 

Let us consider two trapezoidal fuzzy numbers ),,,(~
4321 rrrrr =  and 

),,,(~
4321 bbbbb = . 

If 32 br ≤ , then we have 

( ) { }yxyxbrPos br ≤=≤ )}(),(min{sup~~
~~ μμ  

        { } { } ,11,1min)(),(min 3~2~ ==≥ br br μμ       

which implies that 1)~~( =≤ brPos . If 32 br ≥  and 41 br ≤  then the supremum is achieved at 

point of intersection xδ  of the two membership function )(~ xrμ  and )(~ xbμ . A simple 

computation shows that 
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and  

 δδ )( 121 rrrx −+=  

If  41 br > , then for any yx < , at least one of the equalities 0)(,0)( ~~ == yx br μμ  hold. 

Thus we have ( ) 0~~ =≤ brPos . Now we summarize the above results as 
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Especially, when b~  is the crisp number 0, then we have  
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where  

21

1

rr
r
−

=δ . (3.4) 

We now turn our attention the following lemma. 
 

Lemma 3.1 [4] Assume that trapezoidal fuzzy number ( )4321 ,,,~ rrrrr = . Then for any given 

confidence level α  with ( ) αα ≥≤≤≤ 0~,10 rPos  if and only if  1)1( rα− + 02 ≤rα . 

The λ  level set of a fuzzy number ( )4321 ,,,~ rrrrr =  is a crisp subset of R and  denoted by  

},)({]~[ Rxxxr ∈≥= λμλ , then according to Carlsson et al [3], we have 

)](),([},)({]~[ 344121 rrrrrrRxxxr −−−+=∈≥= λλλμλ . 

Given )](),([]~[ 21 λλλ aar = , the crisp possibilistic mean value of ( )4321 ,,,~ rrrrr =  is 

∫ +=
1

0 21 ))()(()~(~ λλλλ daarE ,  

where  E~  denotes fuzzy mean operator. 

We can see that if ( )4321 ,,,~ rrrrr =  is a trapezoidal fuzzy number then 

63
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=−−+−+= ∫ λλλλ . (3.5) 

 

4. The weighted possibilistic mean variance and covariance  
of fuzzy numbers 
 

The classical mean-variance portfolio selection problem uses the variance as the 
measure for risk, which puts the same weight on the down side and upside of the return. In 
this section, we study the “weighted” possibilistic mean-variance and covariance portfolio 
selection model. 

 

Definition 4.2  [6])  Let F∈r~  be a fuzzy number with )](),([]~[ 21 λλλ rrr = , ]1,0[∈λ .  The 

w -weighted possibilistic variance of r~  is 
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where weighting function is non-decreasing and satisfies 
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∫ =
1

0
1)( λλ dw . (4.1) 

The standard deviation of r~  is defined by 

)~(~ rVarr =σ  (4.2) 

Let r~ fuzzy number and w be a weighting function, we define the weighted possibilistic 

variance of r~  by 
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and the weighted covariance of r~  and b~  is defined as 
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where 1≥γ , be a weighting function then the power-weighted variance and covariance r~  

and b~  are computed by  
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Theorem  4.1 [12] The mean-variance efficient portfolio model is  
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 njMxM jjj ,1,21 =≤≤ . (4.10) 

 
In the next theorem we extend ([12], Theorem 4.2) to the case weighted possibility 

mean- variance approach with a special weighted )(λw . 

Theorem 4.2 Let 
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Proof :  From the equation (3.5), we have 
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Furthermore, from (4.11)-(4.14) given by Theorem 4.1, we get the following form : 
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njMxM jjj ,1,21 =≤≤ . (4.18) 

 
This completes the proof.     � 

Problem (4.15)-(4.18) is a standard multi-objective linear programming problem. 
Also we can obtain an optimal solution by using some algorithms of multi-objective 
programming [3, 11].  
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