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Abstract: This paper presents the three-dimensional transportation problem, a double sum 
model in which the objective function is the ratio of two positive linear functions. This paper 
objective is to present how to obtain optimum with simplex method. To illustrate the 
procedure, a numerical example is given. 
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Problem Description 
 

I am proposing now to solve the 3-dimensional transport problem – a double sum 
model - with the fractional linear objective function and linear constraints: 
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Requiring the following specifications: 
m – the number of sources 
n – the number of destinations 
p – the number of means of conveyance 
ai – the available quantity in each source i = 1,m 
bj – the necessary quantity in each destination j = 1,n 
ck – the quantity with must be transported by means of conveyance k = 1,p 
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Matrix      X = {xijk \ i = 1, m; j = 1, n; k = 1, p},     which     satisfies constraints (2) 

(3) (4) (5), is called a transportation plan (feasible solution) and plan X is called optimum if it 
satisfies (1). 

When the condition (7) is satisfied, the resulting formulation is called a balanced 
transportation problem. Relation (7) is the necessary and sufficient condition for the 
existence of the solution: the level of the matrix of the constraint system is m+n+p  showing 
that a non-degenerated transportation plan of problem (1-7) contains at least  m+n+p-2  
non-null components;  

The objective is to establish a transportation plan with minimum total expenses. 
The function (1) is explicit quasi concave in S = { X / (2) (3) (4) (5) } i.e.: 

If  x1, x2 ∈ S, x1 ≠ x2, f(x1) ≠ f(x2), λ∈(0,1) and x0 = λx1 + (1- λ)x2 then min[f(x1), f(x2)] < f(x0). 
For such function, local minimum is not necessarily a global minimum. Every 

differentiable [3] explicit quasi concave function is pseudo concave as well. An optimality 
criterion for local minimum is given in [1] 

In this paper is made to generalize the results given by [2],[6]. This paper objective 
is to present how to obtain optimum with the help of the simplex method. 

 
Solving the problem 
 

The considerations concerning the three-dimensional problem are valid.  
An initial feasible solution can be obtained by using the known methods from the 

three-dimensional transport problem [4][5].  
We denote  Ix  = {(i,j,k) / xijk > 0, xijk ∈ X} 
Due to (7) each nondegenerate solution will contain m+n+p–2 positive 

components. 
We consider the dual variables (simplex multipliers):  
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)( 222
kjiijkijk wvunn ++−=′

 ),,( kji∀  (11) 
System (8) – (9) can be solved independently. So, system (8) – (9) has m+n+p-2 

equations with m+n+p variables. We can arbitrarily set 01
1 =u , 01

1 =v  and solve for the 
other multipliers. 

Having determined 
1
iu , 

2
iu , 

1
jv
,  

2
jv
, 

1
kw , 

2
kw  we shall use these values to 

determine ijkm′
 and ijkn′

 for the non-basic variables. 
Let X* = (x*ijk)ijk be a feasible solution of the problem (1) – (7). 
To establish the optimal criterion we express f(x) in terms of the non-basic variables 

only. 
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By means of a similar procedure we can also write : 
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Therefore the function f(x) becomes: 
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The partial derivates of the function f(x) evaluated at the point 
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We note  12 VnVm ijkijkijk ′−′=Δ
 

The dual variables 
1
iu , 

2
iu , 

1
jv
,  
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1
kw , 

2
kw   mi ,1=  nj ,1=  

pk ,1=  determined, it would be easy to calculate ijkΔ
 for non-basic variables. 

The solution X* can be improved if it exists at least a value 
0<Δijk  

Theorem A solution X* = (x*ijk)ijk  is a local optimum if 
0≥Δijk  for all non-basic 

variables. 
If one of this values is not positive, we choose  

{ }0min
000

<ΔΔ=Δ ijkijkkji  

and we improve the value of f(x) by introducing 000 kjix
 in the set of basic variables. 

The variable which leaves the basis and the value of the basic variable in the basis 
can be determined as usual. 

 
Example 
 
Consider the problem with  m=3, n=2, p=3, and 
a1=24, b1=40, c1=16 
a2=8, b2=19, c2=31 
a3=27,  c3=12 
The matrices of costs: mijk / nijk 
 
 
 
 
 
 
An initial feasible solution obtained as in [4],[5] is X0: 
 
 
 
 
 
 

for which the value of objective function is 
5,1

549
828

0 ≈=f
 

 

Optimality verification : we determine the quantities 
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from systems: 
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2 20/15 21/15
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We obtain  

01
1 =u     01

1 =v    151
1 =w      02

1 =u    02
1 =v       82

1 =w  

51
2 =v   91

2 =w     62
2 =u          12

2 =v        92
2 =w  

21
3 =u           61

3 =w           12
3 =u            42

3 =w  
The matrices: m’ijk / n’ijk 

 
 
 
 
 
 
 
For which V1=828 
         V2=549,  V1≈1,5V2 

And matrix ijkijkijkijkijkijk VnmVVnVm Δ′⋅=′⋅−′≈⋅′−⋅′=Δ 2212 )5,1(
  

( 0=Δijk  for basic components).  

Matrix 
:ijkΔ′
 

 
 
 
 
 
 

The solution is not optimum because there are components ijkΔ
 < 0.  

We improved solution: 

Input criterion : 
}0min{16211 <ΔΔ=−=Δ ijkijk  

Output criterion: as in [4],[5]: for basic components : 
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k=1 
i     

j 1 2 
1 0/0 -11/-6
2 -7/6 -16/-1
3 -3/-1 2/10 
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j 1 2 
1 9/6 0/0 
2 0/0 -4/-1
3 0/0 7/9 
 

k=3 
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j 1 2 
1 1/-1 0/0 
2 0/0 -8/-1 
3 0/0 0/0 
 

k=1 
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j 1 2 
1 0 -2 
2 -16 -14,5 
3 -4,5 -13 
 

k=2 
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j 1 2 
1 0 0 
2 0 -2,5
3 0 -6,5
 

k=3 
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j 1 2 
1 2,5 0 
2 0 -6,5 
3 0 0 
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Solution actualization for basic components: 
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The new solution X1 is: 
 
 
 
 
 
 
 

for which the value of objective function is 
3,1

597
772

1 ≈=f
 

Resume from optimality verification 
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