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Abstract 

Control Charts are process control techniques widely used to observe and control deviations 

and to enhance the quality of the product. Traditional control charts are based on the as-

sumption that process data are independent in nature. Shewhart control charts are well 

known and are based on the basic assumption of normality. If process parameters are used 

to construct control limits based on preliminary samples, stability of the limits needs to be 

established as presence of outliers may affect the setting of control limits. In this paper an 

attempt has been made to first develop robust control charts based on trimmed mean and 

modified trimmed standard deviation. Secondly, an estimate of process standard deviation 

using Gini’s Mean Difference (G) is also considered to modify the mean chart. Lastly, a com-

parative study is carried out to evaluate the performance of these two proposed robust charts 

with existing robust x̅-MAD chart and two classical control charts namely x̅-s chart and its 

modified x̅-sv chart, based on simulated data. Simulation study is also considered for perfor-

mance evaluation of the proposed charts with other charts based on Average Run Length 

(ARL) and Operation Characteristic (OC) curves. In addition to the simulation, real data set is 

also used for setting up of robust control limits.  

Keywords: Control chart, Trimmed mean, Modified Trimmed Standard deviation, Gini’s 

Mean Deviation, Outlier, Average Run Length, Operation Characteristic Curve 

 

1. Introduction  

 

The Shewhart control chart, used for monitoring industrial processes is the most 

popular tool in Statistical Process Control (SPC), developed under the assumption of inde-

pendence and normality. Performance of a control chart is dependent on the stability of the 

estimates used to construct control limits in phase I of the analysis. If selected estimators for 

constructing the limits are influenced by extreme values, setting up of limits may affect the 

control charting procedure. In situations, when the set limits are narrow, risk of a point fall-

ing beyond the limit increases thereby  false indication of the process  being out of control 
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also gets increased. Similarly, if the limits are wider, the risk of points falling within the limits 

increases and hence falsely indicates the process to be in control.   

When extreme values are present, mean and sample standard deviation are not 

considered to be good representatives of the data. A robust estimator is an estimator that is 

insensitive to changes in the underlying distribution and also resistant against the presence 

of outliers. Rockie (1989) suggested that in order to identify outliers, limits of a control chart  

be set based on robust measures while non-robust measures are plotted on it. There are 

many robust and non-robust measures of location and scale available in literature, which 

are used to develop control charts. The benefit of using control charts based on robust con-

trol statistics is that it does not have either a very high or a very low false alarm rate when-

ever the parameters to be controlled are close to the targets, although the data is no longer 

normal. 

A location free, unbiased measure that can be used even with departure from nor-

mality is Gini’s Mean Difference (G) introduced by Corrado Gini (1912).  Yitzhaki (2003) 

introduced G as a superior measure of variability for non-normal distributions. Among the 

robust measures for dispersion, Median Absolute Deviation (MAD), introduced by Hampel 

(1974) is the widely used measure in various applications, as an alternative to sample 

standard deviation. Yitzhaki and Lambert (2013) showed that MAD, Least Absolute Deviation 

(LAD) and absolute deviation from a given quantile (QUAD) are actually either Gini’s Mean 

Difference (G) of specific transformations applied to the distribution of the variables, or spe-

cial cases of the between-group component of Gini's Mean Difference, called BGMD. 

Riaz and Saghirr (2007) have developed a dispersion control chart based on G. 

Abu-Shawiesh (2008) introduced MAD to develop a robust dispersion control chart. Kayode 

(2012) used an estimate of process dispersion using MAD to improve mean chart and evalu-

ated its performance through a comparative study of control charts. 

The location charts use sample mean as an estimate for location parameter which 

are easily influenced by the extreme values  and hence not  suitable for heavy tailed distribu-

tions.  The effect of extreme observations may be reduced with such observations being 

simply removed or given less weightage. 

In this context, trimmed mean [Tukey, 1948] and its standard error are more ap-

pealing because of its computational simplicity. Apart from that, these measures are less 

affected by departures from normality than the usual mean and standard deviation. Wu and 

Zu (2009) showed that the trimmed mean is much more robust than its predecessor called 

Tukey trimmed mean. Relative to the mean, trimmed mean is highly efficient for large per-

centage of trimming at light-tailed symmetric distributions and much more efficient at heavy-

tailed ones. Standard error of trimmed mean is not sufficient to estimate process dispersion 

because of trimming [Dixon and Yuen, 1974].  Huber (1981) obtained a jackknife estimator 

for its variance. Capéraà and Rivest (1995) derived an exact formula for variance of the 

trimmed mean as a function of order statistics, when trimming percentage is small. Sind-

humol et al.(2015)  modified trimmed standard deviation and  observed it  to be relatively 

more efficient compared to sample standard deviation. The γ-trimmed mean is defined as 

𝜇𝑡 =
1

1−2𝛾
∫ 𝑥 𝑓(𝑥)𝑑𝑥.

𝑥1−𝛾

𝑥𝛾
 (1) 

The trimmed mean is both location and scale equivariant. Its influence function is 

bounded but has jumps at 𝑥𝛾 and 𝑥1−𝛾. It is qualitatively robust when 𝛾 > 0 and its break-

down point is 𝛾. It shares the best breakdown point robustness of the sample median for any 

common trimming thresholds. 
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The principal purpose of this paper is to propose mean charts based on trimmed 

mean and its modified standard deviation. Moreover, simulation study is carried out to show 

the robustness at different levels of trimming. Further, a modified mean chart based on G is 

also developed as a robust control chart. Simulation study is carried out to compare the con-

trol limits of the proposed robust control charts with robust x̅-MAD chart and classical x̅-s 

chart and x̅ − 𝑠𝑣 chart. Comparison of proposed charts performance using Operation Char-

acteristic (OC) as well as Average Run Length (ARL) for different distributions is also carried 

out.  

 

 

 

 

2. Classical Mean Charts 

 

If 𝑥𝑖𝑗 (𝑖 = 1,2, … , 𝑛 and 𝑗 = 1,2, … , 𝑚) represents m random subgroups each of size n  

taken from a continuous and identical distribution with σ2
  unknown, an unbiased estimator 

is obtained using  variance  𝑠𝑗
2 =

1

𝑛
∑ (𝑥𝑖𝑗 − 𝑥̅𝑗

𝑛
𝑖=1 )2

,where 𝑥̅𝑗 =
1

𝑛
∑ 𝑥𝑖𝑗

𝑛
𝑖=1 . If the process distribu-

tion is normal with parameters (µ, σ) control limits constructed for phase I analysis of mean 

chart are 

CL = 𝑥̿, UCL = 𝑥̿ + 3
𝑆̅

(√𝑛)𝑐4 
= 𝑥̿ + 𝐴3𝑆̅, LCL = 𝑥̿ − 3

𝑆̅

(√𝑛)𝑐4 
= 𝑥̿ − 𝐴3𝑆̅. (2) 

where n is the sample size and A3 is a function of n and average of sample mean 𝑥̅ and 

standard deviation s are taken over m subgroups. 

Mahmoud et al. (2010) considered 𝑆𝑣̅ = (
1

𝑚
∑ 𝑆𝑖

2)𝑚
𝑖=1

1/2
based on unbiased estimator 

of sample variance and showed that its efficacy in control charting application. Thus, using 

this estimator, a modification to classical location control limits can be set as   

UCL = 𝑥̿ + 𝐴 𝑆𝑣̅;  CL = 𝑥̿; LCL = 𝑥̿ − 𝐴 𝑆𝑣̅. (3) 

The above two standard classical control charts is chart is used to draw comparison 

and evaluate the  performance of the proposed charts in  the presence of outliers. 

 

3. Robust chart based on Median Absolute Deviation 

 

If 𝑥1, 𝑥2, … , 𝑥𝑛 is a set of observations, Hampel (1974) defined a robust estimate of 

dispersion as 

𝑀𝐴𝐷 = 1.4826 median{|xi − median(xi)|}. (4) 

Abu-Shawiesh (2008) used MAD to estimate and control process dispersion. Let m 

preliminary samples of size n are used to estimate, 𝜎̂ = 𝑏𝑛𝑀𝐴𝐷̅̅ ̅̅ ̅̅ ̅, where average is taken over 

m subgroups. The constant bn is the small sample correction factor given by Croux and 

Rousseeu (1992) as given below. 

 

N 2 3 4 5 6 7 8 9 

bn 1.196 1.495 1.363 1.206 1.200 1.140 1.129 1.206 

 

For n>9, bn = n/( n-0.8). The general model for the control chart based on MAD is 

introduced by Abu-Shawiesh (2008). Kayode (2012) used MAD to modify limits of mean 

chart as 
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UCL = 𝑥̿ + A6𝑀𝐴𝐷̅̅ ̅̅ ̅̅ ̅;   𝐶𝐿 =  𝑥̿  ; LCL = 𝑥̿ − A6𝑀𝐴𝐷̅̅ ̅̅ ̅̅ ̅ (5) 

where 𝑥̿ is the average of the sample mean taken over m preliminary samples and A6 =

 3 
𝑏𝑛

√𝑛
. Adekeye and Azubuike (2012) have shown that this robust chart is good even for non-

normal population.  

 

4. Robust Control chart based on Gini’s Mean Difference (G) 

 

If 𝑥1, 𝑥2, … , 𝑥𝑛 is a set of observations, an index of variability G is defined as  

𝐺 = 2 ∑ ∑ |𝑥𝑖 − 𝑥𝑗|𝑛
𝑖=1

𝑛
𝑗=1 𝑛(𝑛 − 2)⁄  (𝑖 ≠ 𝑗) and = (√𝜋/2)𝐺 .  (6) 

Riaz and Saghirr (2007) developed a dispersion control chart named G-chart based 

on G and its control limits are 

UCL =𝐾 + 3𝑏3𝐾;    CL =𝐾;    LCL =𝐾 − 3𝑏3𝐾.̅  (7) 

where 𝐾 is the average of K taken over m subgroups and b3 is the standard deviation of G/σ.  

A modified mean chart based on process dispersion estimated using G can be con-

structed with the control limits as 

   UCL = 𝑥̿ + 𝐴 𝐾; CL = 𝑥̿; LCL = 𝑥̿ − 𝐴 𝐾. (8) 

where 𝐴 =  3 /√𝑛. 

The proposed modified chart  𝑥̅-K based on G is considered for performance evalu-

ation with the classical 𝑥̅ − 𝑠𝑣  chart as K is an unbiased estimator which can be used as an 

alternative to sample variance and sv is based on unbiased estimator.  

 

5. Robust Control Charts based on trimmed mean  

 

Langenberg and Iglewicz (1986) introduced trimmed mean 𝑥̅ and R chart. Amin 

and Miller (1993) have developed robust 𝑥̅ control chart usingVariable Sampling Interval 

(VSI) schemes and evaluated the behavior of VSI charts where trimmed mean, Winsorized 

mean, and the median are used. Figueiredo and Gomes (2004 and 2009) considered robust 

control charts based on the total median and on the total range statistics, for monitoring the 

process mean value and the process standard deviation, respectively. Schoonhoven.et.al. 

(2011) used a few robust location measures namely Median of means, 20% Trimmed mean 

of sample means, Hodges–Lehmann, Trimeans and 20% Trimmed mean of sample trimeans 

to develop mean charts. Schoonhoven and Does (2013) used Adaptively Trimmed Standard 

deviation denoted by ATS and 20%trimmed mean to improve mean chart. 

Let x(1) ≤ x(2) …≤ x(n) denote an order statistics sample of size n, from a population 

having symmetric distribution. The r-times symmetrically trimmed sample is obtained by 

dropping both r-lowest and r-highest values. Here 𝑟 = [𝛼𝑛] is the greatest integer and trim-

ming is done for 𝛼%(0 ≤ 𝛼 ≤ 0.5) of n. Trimmed mean is defined as 

𝑥̅𝑇 =  
∑ 𝑥(𝑖)

𝑛−𝑟
𝑖= 𝑟+1

𝑛−2𝑟
. (9) 

Sample standard deviation of observations from trimmed mean is 

𝑠𝑇 =  √
∑ (𝑥(𝑖)−𝑥̅𝑇)2𝑛−𝑟

𝑖= 𝑟+1

𝑛−2𝑟−1
. (10) 

Modified standard deviation is defined as σ̂T = 𝑠𝑇
∗ = 1.4826 𝑠𝑇 where the constant 

multiplier is used to cover the loss of information due to trimming. As percentage of trim-

ming is increased, this constant gives a control on loss due to trimming. Sindhumol.et 

al.(2015) have introduced this modified standard deviation of trimmed mean, say 𝑠𝑇
∗
 and 
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have introduced it to control process dispersion. If process dispersion is estimated using this 

robust estimator, its average over m subgroups is, 𝑠̅𝑇
∗ = 1.4826 s̅T and limits of dispersion 

chart are 

CL =𝑐4𝑠̅𝑇
∗
 ; LCL = B3 𝑠̅𝑇

∗
 and UCL = B4𝑠̅𝑇

∗
. (11) 

The constants B3 and B4 are the same constants as used in a classical chart.  The 

limits of mean control chart can be modified using this modified standard deviation and de-

pending upon the percentage of trimming, these limits have varying width as  

CL = 𝑥̿ ; UCL = 𝑥̿ + 𝐴3𝑠̅𝑇
∗
 ; LCL = 𝑥̿ − 𝐴3𝑠̅𝑇

∗
. (12) 

If location parameter is also estimated using trimmed mean, one can get control 

limits of robust mean chart for a particular level of trimming as 

CL = 𝑥̿𝑇 ; UCL = 𝑥̿𝑇 + 𝐴3𝑠̅𝑇
∗
 ; LCL = 𝑥̿𝑇 − 𝐴3𝑠̅𝑇

∗
. (13) 

The constants A3 and A6 are functions of sample sizes and the advantage of pro-

posed control chart is the usage of the same constants A3 as used in the classical control 

chart.  

The proposed robust control charts based on two levels of trimming of 10% and 

20%, namely 𝑥̅ − 𝑠𝑇
∗
 charts,  𝑥̅𝑇 − 𝑠𝑇

∗
 , and the proposed robust control chart based on Gini, 

𝑥̅-K chart and the other robust chart 𝑥̅-MAD discussed earlier along with the classical 𝑥̅ − 𝑠 ,  

𝑥̅ − 𝑠𝑣   charts  are considered for  comparison.  

 

6. Comparison of Robust charts for performance evaluation 

 

The performance evaluation of the proposed robust charts is carried out as an em-

pirical study based on Monte Carlo simulation conducted with 5000 runs using SAS software. 

Random samples generated from N(0,1) with sample sizes (n) of 10 and 20  with  m=20 as 

number of samples for each cases are considered for simulation. Two levels of symmetric 

trimming at10% (𝑟 = 1) and 20% (𝑟 = 2) are considered for each subgroup. Clean samples 

are considered from N(0,1) to analyze type-1 error and contaminated samples are included 

to study the effect of detection of outliers or assignable causes of variation. The study con-

sidered out-of-control situation based on samples taken from N(1,1), N(2,1) and N(4,1). 

Samples from normal distribution with high location parameter, as is in the case of N(4,1), 

detection of shifts are easily studied in all the above charts. When small deviation in process 

location  happened, as from samples  N(1,1), even though false alarm is almost equal for all 

charts,  charts based on 20% trimming detects contaminated sample more efficiently, com-

pared to other charts. The performance of this chart is more clear and confirmed for the case 

of N(2,1). Simulation study also showed that the performance of mean chart is improved 

compared to the classical mean chart, when modified standard deviation of 20% trimming is 

used to estimate process dispersion.  

A classical way of illustrating the effect of departure from normality is to consider 

contaminated normal distribution. Contamination of 40% is made for 5% of the data, which 

are the last four subgroups among 20. Hence sample mean is calculated so that 10% and 

20% trimming will be meaningful for a contaminated subgroup. Thus, the contaminated 

models are 0.60 N(0,1) with 0.40 N(1,1) and 0.40 N(2,1). 
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Figure 1: Control limits of modified trimmed mean charts, 𝑥̅-sT

*
 and 𝑥̅T-sT

* 
and other charts 

based on MAD and s with n=10, m=20 and 10% contamination using N(2,1) 

 

 

Figure 2: Control limits of modified trimmed mean charts, 𝑥̅-sT

*
 and 𝑥̅T-sT

* 
and other Charts 

based on MAD and s with n=10, m=20 and 20% Contamination using N(1,1). 

 

When charts 𝑥̅-s, 𝑥̅-sv, 𝑥̅-MAD, 𝑥̅-sT

*
(with 10% and 20% trimming) and 𝑥̅T-sT

*
(with 

10% and 20% trimming) are compared in presence of contamination, more contaminated 

samples are detected by 𝑥̅T-sT

*
 chart than other charts having almost same type I error. Also, 

for 10% level of trimming, charts 𝑥̅𝑇-s and 𝑥̅T-sT

* 
perform equally well and have the ability to 

detect small variations too. Though the chart 𝑥̅-sT

*
is bit wider compared to 𝑥̅-s chart due to 
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the effect of multiplier, chart 𝑥̅T-sT

* 
has smaller width compared to 𝑥̅-MAD. Figure-1 shows 

performance of modified trimmed mean chart compared to other charts including chart 

based on MAD, in terms of detection of  samples when contaminated with N(2,1) (𝑥̅𝑇 =

𝑥̅∗
and sT

*
 = s

*
in all the  figures). 

At 20% level of trimming, width of the charts reduces respectively for charts 𝑥̅-s, 𝑥̅-

MAD and 𝑥̅-sT

*
and performance of charts 𝑥̅-sT

*
 and 𝑥̅T-sT

* 
are same. Increase in trimming 

makes loss of data as well as an increase in type I error. Still these charts have the ability to 

detect smaller variation and can even act as warning limits in case of larger trimming levels. 

Selection of dispersion measure influences performance of mean chart and the simulation 

study shows that sT

*
is a better choice. Figure-2 shows performance of the modified trimmed 

mean chart compared to other charts including chart based on MAD, in terms of detection of  

samples when contaminated with N(1,1) respectively. The charts 𝑥̅-sT

*
 and 𝑥̅T-sT

* 
have same 

and smaller width which helped in the early detection of variations.  

 

Figure 3: Control limits of modified trimmed mean charts, 𝑥̅-sT

*
 and 𝑥̅T-sT

* 
and  𝑥̅-K Charts 

with other charts based on MAD and sv with n=10, m=20 and  10% contamina-

tion using N(2,1).  

 

When charts 𝑥̅-sv, 𝑥̅-K, 𝑥̅-sT

* 
(with 10% and 20% trimming) and 𝑥̅T-sT

* 
(with 10% and 

20% trimming) are compared in presence of contamination, more contaminated samples are 

detected by 𝑥̅T-sT

*
 chart than other charts having almost same type I error. At 10% level of 

trimming, chart 𝑥̅-sT

*
showed almost same width as 𝑥̅-sv due to the effect of multiplier sT

*
. The 
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charts with smaller width namely, 𝑥̅𝑇-s and 𝑥̅T-sT

* 
perform equally well and have ability to 

detect small variations too. Mean chart with dispersion measure K is a good alternative to 

that of sT

* 
as width of  𝑥̅-K chart is smaller in width than that of 𝑥̅-sT

*
and 𝑥̅-sv, for small per-

centage of trimming. Figure -3 showed performance of modified trimmed mean chart com-

pared to other charts in terms of detection of samples when contaminated with N(2,1). 

At 20% level of trimming, chart 𝑥̅-sT showed almost same performance and width as 

𝑥̅T-sT

*
 and have the smallest width among other charts. All other charts, including charts 

based on K, have almost the same width. Mean chart with dispersion measure K is a good 

alternative to mean chart with sv, though both are based on unbiased estimators. Figure -4 

shows performance of trimmed mean chart compared to other charts including 𝑥̅ − 𝐾 in 

terms of detection of samples when contaminated with N(1,1). 

 

 

Figure 4: Control limits of modified trimmed mean charts, 𝑥̅-sT

*
 and 𝑥̅T-sT

* 
and  𝑥̅-K Charts 

with other charts based on MAD and sv with n=10, m=20 and  20% contamina-

tion using N(1,1).  
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The ability of the chart to detect shift in quality due to assignable causes of varia-

tion is accessed by Operating Characteristic curve. The OC curve of the 𝑥̅-chart for phase II 

analysis is studied here. The OC function of 𝑥̅–chart, is the probability of not detecting the 
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shift in the process mean µ on the first subsequent sample of size n taken after the shift has 

happened. If the mean in the in-control state is µ0 and the shift is µ1= µ0+kσ, β-risk is de-

fined under standard normal distribution function  ϕ as 

β = P(LCL ≤ 𝑥̅ ≤UCL / µ =µ1 )= ϕ (3-k√𝑛 )- ϕ (-3-k√𝑛 ). (14) 

The OC curve for the chart is drawn by plotting the β -risk against the magnitude of 

the shift in quality which is expressed in standard deviation units for various sample sizes n. 

Process s.d is considered to be known or to be estimated before considering β–risk. Steeper 

the curve better the probability of detection of shift, which is variation in the process quality.  

Figure 5 shows that charts 𝑥̅𝑇-s and 𝑥̅T-sT

* 
have the smallest β-risk compared to all other 

charts. Mean charts modified with robust measures MAD and G have almost same β-risk and 

OC curves are overlapping.  

 

 

Figure 5: Comparison of OC curves for modified trimmed mean charts and 𝑥̅-K chart with 

other charts based on s and MAD. 

 

6.2. Performance Using Average Run Length 

Average Run Length is defined as reciprocal of the probability that any point exceeds 

the control limits. It shows how often false alarms occur or how often the chart detects a shift 

in quality. If the process is in-control, Average Run Length, ARL0, should be large and if the 

process is out-of-control ARL should be very small. The number of subgroups taken before 

an out-of-control x̅ happened is recorded as a run length observation, RLi. The process is 

repeated 10000 times and the results of this simulation study are given in Table 1. The ARL0   

was calculated as 𝐴𝑅𝐿0 =
∑ 𝐴𝑅𝑖

10000
𝑖=1

10000
. The same procedure is used to compare the out-of-

control ARL1, that is, in presence of assignable causes also. 

Table 1: ARL for sample size n=10 and m=20 

Distributions 𝒙̅ − 𝒔 

chart 

𝒙̅ −Svar 

chart 

𝒙̅ −MAD 

chart 

𝒙̅ − 𝑲 

chart 

𝒙̅ −ST chart 𝒙̅𝑻 −ST chart 

r=1 r=2 r=1 r=2 

N(0,1) 323 322 319 230 506 64 527 63 

N(1,1) 544 544 581 620 470 0.283 470 0.275 

N(2,1) 0.0008 0.0008 0.006 0.004 0.0008 0 0.0008 0 

N(0,1)+40% 317 317 331 441 256 0.74 261 0.72 
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N(1,1) 

N(0,1)+40% 

N(2,1) 

66 66 68 83 65 6.43 65 6.14 

 

Table 1 shows that among the mean charts, dispersion estimated using sT

*
 with 10% 

trimming ARL0 calculated on N(0,1)  is larger than that of other charts. Hence small percent-

age of trimming can be advisable even for a controlled process. In presence of assignable 

causes, ARL1 is better for 20% trimming. The ARL comparison supports mean chart modified 

with robust MAD than that of G. The study shows the need of using robust measure of dis-

persion in place of sample standard deviation, especially sT

*
 while using mean chart to con-

trol a process.  

The ARL study supports MAD as a better choice as compared to G to modify mean 

charts. The study has established use of trimmed mean and modified trimmed standard de-

viation to estimate process mean and standard deviation and mean charts modified on these 

estimate as better choices in quality control applications.  

 

7. Charts performance on real data 

 

The performance of charts based on trimmed means at two levels has shown to be 

a better performer compared to other robust charts and classical charts based on simulation 

studies, OC curves and ARL. The performance of the charts is validated on real data shown 

in Figure 6.  

 

 

Figure 6: Comparison of modified trimmed mean charts for trimming 10% and 20% respec-

tively with classical mean chart based on data from D.C.Montgomery, Table 6E.5  

The fill volume of soft drink beverage bottles is considered as a quality characteristic. The 

volume is measured (approximately) by placing a gauge over the crown and comparing the 

height of the liquid in the neck of the bottle against a coded scale. On this scale a reading of 

zero corresponds to the correct fill height. Fill heights are shown by Montgomery (2009) in 

Table 6E.5 and fifteen samples of size n=10 have been analyzed using mean charts with 

dispersion measures s (in figure LCL, UCL), modified trimmed standard deviation sT

*
 for 10% 
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(in figure LCL-1, UCL-1) and for 20% (in figure LCL-2, UCL-2). The sT

*
-chart for 20% trim-

ming detected 10
th
 sample also as out of control point. 

 

8. Conclusion 

 

Trimmed mean and standard deviation based on it are robust measures of location 

and scale. Trimmed mean is already exposed to control charting process. However, actual 

variance of trimmed mean which is a function of order statistics or variance of trimmed 

mean modification based on Winsorization, are not helping to represent process variance. 

The modified standard deviation presented by Sindhumol.et.al. (2015) is a better alternative 

in this regard. 

Selection of dispersion measure as well as location measure to estimate process 

parameters influence performance of mean chart. In this study two robust location control 

charts, one based on measures on trimmed data and the other based on G are proposed.  

Four types of trimmed mean charts including trimmed mean (10% and 20% of trimming), 

modified trimmed standard deviation for two levels of trimming (10% and 20% of trimming), 

two robust mean charts one modified with G and the other with MAD, two classical mean 

charts based on unbiased sample variance and biased sample standard deviation, are con-

sidered and a simulation study is conducted for comparing performance of charts in terms of 

false and correct detection of outliers. In presence of assignable causes of variation, charts 

based on trimmed mean and modified trimmed standard deviation, the results are outstand-

ing even for small shifts. The chart can be even used as warning limits for early detection of 

assignable causes, for large trimming percentage. The chart 𝑥̅T-sT

*
 has smaller width com-

pared to 𝑥̅-MAD and 𝑥̅-K charts, especially in large trimming. Mean chart with dispersion 

measure K is a good alternative to that of sv (Mahmoud et al. , 2010) though both are based 

on unbiased measures of dispersion, as width of 𝑥̅-K chart is smaller. The study shows that to 

modify to mean chart, MAD is slightly a better choice than G. It is noted that, both 𝑥̅-sT

* 
and 

𝑥̅T-sT

* 
(at10% trimming) perform better than all other charts when there is no contamination. 

The comparative study of limits in terms of false detection shows that all charts are alike 

except for 20% trimming. 

The OC curves show that charts 𝑥̅𝑇-s and 𝑥̅T-sT

* 
have the smallest β-risk compared 

to all other charts and hence have the largest power to detect assignable causes of varia-

tions. Mean charts modified with robust measures G and MAD have almost same β-risk.   

The ARL study shows that a small percentage of trimming is advisable even for an 

in-control process. Robust chart based on trimmed mean and modified trimmed standard 

deviation chart excel in performance for small percentage of trimming and can even be used 

as warning limits for large percentage of trimming, in the presence of assignable causes. The 

ARL comparison supports mean chart modified with robust MAD than that of  G while OC 

curve study gives all most equal β-risk.  

Robust location chart based on trimmed mean and modified trimmed standard de-

viation can be used as an effective tool to control and improve process performance. This 

robust limits help to detect assignable causes or outliers in the phase II analysis if statistical 

control of process location parameter is tested using sample means collected. Both ARL and 

OC study show that, 𝑥̅-sT

*
and 𝑥̅T-sT

*
 (at10% trimming) perform better than all other charts 

under contamination or otherwise. The study also that in order to frame warning limits, one 

can increase the trimming percentage. Hence study supports usage of data with small per-
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centage of trimming to frame control limits in phase I analysis to get a better control in 

phase II analysis of a process. 

Charts are tested on real data also, with two levels of trimming. The robust chart 

for controlling process location parameter using trimmed mean and modified trimmed 

standard deviation is a better option than classical mean chart in real data too. This modified 

trimmed mean chart with 20% trimming identifies more outlier points. 

Study shows that the performance of classical mean chart is increased if process 

dispersion is estimated using sv and the robust measure G is a good alternative to sv. Among 

the G and MAD, for constructing a robust control chart, MAD seems to be a better estimate 

but trimmed mean and modified trimmed standard deviation are better pairs of estimates in 

quality control applications. 
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