

Quantitative Methods Inquires

47

SHA FAMILY FUNCTIONS

Stelian DUMITRA

PdD, Department of Economic Informatics Doctoral School

The Bucharest University of Economic Studies

Bucharest, Romania

E-mail: stelian.dumitra@endava.com; stelu20d@yahoo.com

Abstract

This paper presents a general overview regarding SHA family functions. A lot of hash functions

were proposed in the last three decades and most of them are based upon the MD construction,

especially the MD4 family. The most popular hash functions that belong to the MD4 family are:

MD5, the SHA family (SHA-0, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512) and the RIPEMD

family (RIPEMD, RIPEMD-128, RIPEMD-160, RIPEMD-256, RIPEMD-320). In 2004, collision attacks

against MD5 and SHA-0 were demonstrated by Xiaoyun Wang and one year later she extended a

theoretical attack against SHA-1. NIST took the Wang attack into serious consideration and

decided to open a competition to develop the next secure hash algorithm, named SHA-3. After five

years of competition NIST selected Keccak as winner. Keccak is a family of sponge functions. Also,

this paper describes the sponge construction and its security. Various comparisons between SHA-3,

SHA-2 and SHA-1 regarding the security strengths, performances and construction details are

summarized. The conclusions are presented at the end of the paper.

Keywords: Keccak, SHA-3, hash function, collision resistance, preimage attack, sponge

construction

1. Introduction

Cryptographic hash functions play an important role in the current cryptographic

protocols and they are used to ensure data integrity, data origin authentication, password

protection, random number generation and the likes of them. They produce a fixed-length

output, digest, that can be also treated as a fingerprint of the input data [7]. A lot of security

protocols and applications use hash functions: digital signature scheme for authentication

data such as DSS (Digital Signature Scheme), XML signature, computing MAC (Message Au-

thentication Code)/HMAC (Keyed-Hash Message Authentication Code), secure communica-

tion protocols such as SSH (Secure Shell Host), SFTP (Secure File Transfer Protocol), SSL (Se-

cure Socket Layer), IPSec (Internet Protocol Security) etc, Kerberos protocol for authentication

and data integrity, PGP (Pretty Good Privacy), S/MIME (Secure/Multipurpose Internet Mail

Extensions) for integrity of e-mail messages.

Quantitative Methods Inquires

48

A hash function (ℎ: 𝑀 → 𝑀ℎ) is a function that transforms a variable-length input in-

to a fixed-length output – hash value (for example, 128, 160, 224, 256, 384, 512 bits). In

practice there are two classes of hash functions:

1. One Way Hash Functions – OWHF

2. Collisions Resistant Hash Functions – CRHF

An OWHF function satisfies the following properties

- Given a digest value 𝑑 ∈ 𝑀ℎ it is computationally infeasible to find a message

𝑚 ∈ 𝑀 so that 𝑑 = ℎ(𝑚).

- Given a message 𝑚1 it is computationally infeasible to find another message

𝑚2 ≠ 𝑚1 so that ℎ(𝑚1) ≠ ℎ(𝑚2).

For a CRHF function it is computationally infeasible to find two different messages

𝑚1 and 𝑚2 so that ℎ(𝑚1) = ℎ(𝑚2). This means that the digests are almost unique for each

given message. The OWHF functions are also known as one-way weak collision resistance

and CRHF functions are also known as strong collision resistance.

Another class of hash functions is MAC (Message Authentication Codes) that is a func-

tion of the symmetric key k and the message m, 𝑚 = 𝑀𝐴𝐶𝑘(𝑥). A lot of hash functions were pro-

posed in the last three decades and most of them are based upon the MD (Merkle-Damgård)

construction [8], especially the MD4 family [1]. The most popular hash functions that belongs to

the MD4 family are: MD5 [2], the SHA family (SHA-0, SHA-1, SHA-224, SHA-256, SHA-384,

SHA-512) [3] and the RIPEMD family (RIPEMD, RIPEMD-128, RIPEMD-160, RIPEMD-256,

RIPEMD-320) [4, 5, 6]. The MD4 digest algorithm was developed by Ronald Rivest and the digest

length is 128 bits. All operations are bitwise Boolean functions: AND, OR, XOR and negation.

Boer, Bosselaers and Hans Dobbertin demonstrated weaknesses in MD4 and this algorithm is

not recommended for secure hashing [9, 10]. A new strengthened version of MD4 was intro-

duced by Rivest in 1991 and computes a 128-bit output, called MD5 and possess a collision re-

sistance of about 264
. As MD4, this presented potential weaknesses because pseudo-collisions

were found on its compression function. In 1993, the US National Institute of Standard and

Technology (NIST) published a new message digest standard, SHA (Secure Hash Algorithm). The

first version was SHA-0 and, in 1994, a new version was published, SHA-1, derived from SHA-0

with some changes. SHA-0 and SHA-1 produce an output length of 160 bit. In the absence of

analytical attacks, the maximum collision resistance of SHA-0 and SHA-1 is of about 280
. The

known attack on SHA-0 was developed by Joux and Chabaud [11], a differential attack that finds

two messages hashing with the same value in about 261
evaluations. In 2000 NIST introduced

three more variants of SHA-1: SHA-256, SHA-384 and SHA-512, functions that produce a mes-

sage digest with a length of: 256, 384 and 512 bits. These functions were adopted as standard,

SHA-2, by FIPS in 2002. A new modification of SHA-1 was introduced in 2004, SHA-224, to fit

the security level of 3DES. This function was also included in SHA-2 standard.

In 2004, collision attacks against MD5 and SHA-0 were demonstrated by Xiaoyun

Wang [12]. One year later Wang extended a theoretical attack against SHA-1 and it was

claimed that a collision search would take 269
 steps [13]. An improved version of this attack

was presented by Wang in August 2005 with the time complexity of 263
(a brute-force search

would require 280
 operations) [14]. Other cryptographic attacks on SHA-1 were proposed by

Christophe De Cannière and Christian Rechberger [15], Grechnikov [16], Stéphane Manuel

[17], Cameron McDonald, Philip Hawkes and Josef Pieprzyk [18], Marc Stevens [19].

Although no serious flaws were disclosed against SHA-2, NIST took the Wang at-

tack into serious consideration and decided to open a competition to develop the next secure

Quantitative Methods Inquires

49

hash algorithm, named SHA-3. NIST did not plan to replace SHA-2 with SHA-3, as it consid-

ered that both functions should co-exist. Below is the timeline of the SHA-3 selection process

[20]:

 November 2, 2007: NIST announces a request for a new cryptographic hash

function – SHA-3 [21]

 October 31, 2008: Submission deadline. 64 submissions were received from the

international cryptography community.

 December 10, 2008: The first round began. NIST selected 51 algorithms for

Round 1.

 July 24, 2009: The second round was announced. NIST selected 14 algorithms

for Round 2.

 December 9, 2010: The third round was announced and 5 algorithms were se-

lected:

 BLAKE by Jean-Philippe Aumasson, Luca Henzen, Willi Meier and Raphael

C.-W.Phan

 Grøstl by Lars Ramkilde Knudsen, Praveen Gauravaram, Krystian

Matusiewicz, Florian Mendel, Christian Rechberger, Martin Schläffer and

Søren S. Thomsen

 JH by Hongjun Wu

 Keccak by Joan Daemen, Guido Bertoni, Michaël Peeters and Gilles Van

Assche

 Skein by Bruce Schneier, Niels Ferguson, Stefan Lucks, Doug Whiting, Mi-

hir Bellare, Tadayoshi Kohno, Jesse Walker, Jon Callas

 October 2, 2012: NIST selected Keccak as winner.

Table 1. General information about SHA-3 finalists and SHA-2 in bits

Algorithm
Domain

Extender
Underlying Primitive

Primitive

size

Hash

size

BLAKE HAIFA Block cipher

k=512

b=512

224

256

k=1024

b=1024

384

512

Grøstl Grøstl A pair of permutations

512

512

224

256

1024

1024

384

512

JH JH Permutation 1024

224

256

384

512

Keccak Sponge Permutation 1600

224

256

384

512

Skein UBI Tweakable block cipher

k=512

b=512

t=128

224

256

384

512

SHA-2 MD Block cipher

k=512

b=256

224

256

k=1024

b=512

384

512

Quantitative Methods Inquires

50

2. The SHA-2 Hash Family

The SHA-2 functions: SHA-224, SHA-256, SHA-384, SHA-512 are the next genera-

tion of SHA-1 function standardized by US NIST in 2002 [3]. Initially there were two func-

tions in this standard: SHA-256 and SHA-512. Later, in addition, another two truncated ver-

sions were standardized: SHA-224 and SHA-384. The SHA-2 functions are described in de-

tail below.

Padding the Message. The message M of length l bits is right-padded with a bi-

nary “1” followed by k zero bits, followed by s-bits suffix containing the binary length of the

original message.

𝑙 + 1 + 𝑘 ≡ 448 𝑚𝑜𝑑 512, 𝑠 = 64, for SHA-224 and SHA-256

𝑙 + 1 + 𝑘 ≡ 896 𝑚𝑜𝑑 1024, 𝑠 = 128, for SHA-384 and SHA-512

The length of the padded message should be a multiple of 512 bits. The padded

message must be parsed into N-512 bit blocks, for SHA-224/256, respectively N-1024 bit

blocks, for SHA-384/512, 𝑀(1), 𝑀(2), … , 𝑀(𝑁).

Computing the Message Digest. The algorithm uses 64 (resp. 80) round func-

tions for processing a single message block. An input block 𝑀(𝑖)
 is expressed as

𝑀0
(𝑖)

𝑀1
(𝑖)

. . 𝑀15
(𝑖)

, where 𝑀𝑡
(𝑖)

 are 32-bit (resp. 64-bit) words. The words of the message schedule

are labeled 𝑊0,𝑊1, … , 𝑊𝑡, where t denotes the number of the rounds – 1, 63 for SHA-

224/256, respectively 79 for SHA-384/512.

After the padding phase, eight working state registers a, b, c, d, e, f, g, h are initial-

ized with the (𝑖 − 1)𝑡ℎ
 hash value 𝐻0

(𝑖−1)
, 𝐻1

(𝑖−1)
, … , 𝐻7

(𝑖−1)
. The initial hash 𝐻(0)

 must be initial-

ized with 32-bit constants, for SHA-224/256, respectively 64-bit constants for SHA-384/512.

The steps for computing the message digest are described below:

Step 1. Preparing the message schedule, {𝑾𝒕}:

𝑊𝑡 = {
𝑀𝑡

(𝑖)
 0 ≤ 𝑡 ≤ 15

𝜎1(𝑊𝑡−2) + 𝑊𝑡−7 + 𝜎0(𝑊𝑡−15) + 𝑊𝑡−16 16 ≤ 𝑡 ≤ 63 (𝑜𝑟 79)

For SHA-224/256, the functions 𝜎0 and 𝜎1 are defined as:

𝜎0(𝑥) = 𝑅𝑂𝑇𝑅7(𝑥) ⨁ 𝑅𝑂𝑇𝑅18(𝑥) ⨁ 𝑆𝐻𝑅3(𝑥)

𝜎1(𝑥) = 𝑅𝑂𝑇𝑅17(𝑥) ⨁ 𝑅𝑂𝑇𝑅19(𝑥) ⨁𝑆𝐻𝑅10(𝑥)

For SHA-384/512, the functions 𝜎0 and 𝜎1 are defined as:

𝜎0(𝑥) = 𝑅𝑂𝑇𝑅1(𝑥) ⨁ 𝑅𝑂𝑇𝑅8(𝑥) ⨁ 𝑆𝐻𝑅7(𝑥)

𝜎1(𝑥) = 𝑅𝑂𝑇𝑅19(𝑥) ⨁ 𝑅𝑂𝑇𝑅61(𝑥) ⨁ 𝑆𝐻𝑅6(𝑥)

Step 2. Initializing the variables a, b, c, d, e, f, g, h with the (𝒊 − 𝟏)𝒕𝒉
 hash value:

𝑎 = 𝐻0
(𝑖−1)

, … , ℎ = 𝐻7
(𝑖−1)

(1)

(2)

(3)

(4)

(5)

Quantitative Methods Inquires

51

Step 3. For t = 0 to 63, the following values are calculated:

𝑇1 = ℎ + ∑1(𝑒) + 𝐶ℎ(𝑒, 𝑓, 𝑔) + 𝐾𝑡 + 𝑊𝑡

𝑇2 = ∑0(𝑎) + 𝑀𝑎𝑗(𝑎, 𝑏, 𝑐)

ℎ = 𝑔

𝑔 = 𝑓

𝑓 = 𝑒

𝑒 = 𝑑 + 𝑇1

𝑑 = 𝑐

𝑐 = 𝑏

𝑏 = 𝑎

𝑎 = 𝑇1 + 𝑇2

For SHA-224/256, the functions ∑0 and ∑1 are defined as:

∑0(𝑥) = 𝑅𝑂𝑇𝑅2(𝑥) ⨁ 𝑅𝑂𝑇𝑅13(𝑥) ⨁ 𝑅𝑂𝑇𝑅22(𝑥)

∑1(𝑥) = 𝑅𝑂𝑇𝑅6(𝑥) ⨁ 𝑅𝑂𝑇𝑅11(𝑥) ⨁ 𝑅𝑂𝑇𝑅25(𝑥)

For SHA-384/512, the functions ∑0 and ∑1 are defined as:

∑0(𝑥) = 𝑅𝑂𝑇𝑅28(𝑥) ⨁ 𝑅𝑂𝑇𝑅34(𝑥) ⨁𝑅𝑂𝑇𝑅39(𝑥)

∑1(𝑥) = 𝑅𝑂𝑇𝑅14(𝑥) ⨁ 𝑅𝑂𝑇𝑅18(𝑥) ⨁𝑅𝑂𝑇𝑅41(𝑥)

Ch and Maj are two logical functions that operate on 32-bit (64-bit) words and

three variables, x, y, z.

𝐶ℎ(𝑥, 𝑦, 𝑧) = (𝑥 ∧ 𝑦)⨁(¬𝑥 ∧ 𝑧)

𝑀𝑎𝑗(𝑥, 𝑦, 𝑧) = (𝑥 ∧ 𝑦)⨁(𝑥 ∧ 𝑧)⨁(𝑦 ∧ 𝑧)

𝐾𝑡 are round constants on 32-bit (64-bit) words, where 0 ≤ 𝑡 ≤ 63 or 0 ≤ 𝑡 ≤ 79.

Step 4. Computing the 𝒊𝒕𝒉
 intermediate hash value 𝑯(𝒊)

:

𝐻0
(𝑖)

= 𝑎 + 𝐻0
(𝑖−1)

, … , 𝐻7
(𝑖)

= ℎ + 𝐻7
(𝑖−1)

After processing 𝑀(𝑁)
 the resulting message digest of the message, M, is:

𝐻0
(𝑁)

∥ 𝐻1
(𝑁)

∥ 𝐻2
(𝑁)

∥ 𝐻3
(𝑁)

∥ 𝐻4
(𝑁)

∥ 𝐻5
(𝑁)

∥ 𝐻6
(𝑁)

∥ 𝐻7
(𝑁)

SHA-224/SHA-384 is defined in the same manner as SHA-256/SHA-512 with

the following differences: uses different constants initialization, 𝐻(0)
 and the message di-

gest is truncated at 224/384 bits as: 𝐻0
(𝑁)

∥ 𝐻1
(𝑁)

∥ 𝐻2
(𝑁)

∥ 𝐻3
(𝑁)

∥ 𝐻4
(𝑁)

∥ 𝐻5
(𝑁)

∥ 𝐻6
(𝑁)

, respec-

tively

𝐻0
(𝑁)

∥ 𝐻1
(𝑁)

∥ 𝐻2
(𝑁)

∥ 𝐻3
(𝑁)

∥ 𝐻4
(𝑁)

∥ 𝐻5
(𝑁)

.

More details about implementing SHA-2 are described in [3].

(6)

(7)

(8)

(9)

(10)

(11)

Quantitative Methods Inquires

52

3. Merkle-Damgård construction

Merkle-Damgård construction is a hash construction method which was designed

by R. Merkle [22] and I. Damgård [23] in 1989.

It transforms a compression function, ℎ: {0,1}𝑚𝑐 × {0,1}𝑛 → {0,1}𝑚𝑐, into a hash

function. The 𝑚𝑐 denotes the size of the chaining value and n denotes the block size for the

compression function. Most of the hash functions are built upon MD construction (Figure 1).

It begins with a padding step where the message M is padded so that the message length

becomes a multiple of message block length, n. The most used procedure is: the message M

of length l bits is right-padded with a binary “1” followed by k zero bits, followed by s-bit suffix

containing the binary length of the original message, so that

𝑙 + 1 + 𝑘 + 𝑠 ≡ 0(𝑚𝑜𝑑 𝑛).

Figure 1. The Merkle-Damgård costruction

The message is divided into block of n bits each, 𝑀 = 𝑀1𝑀2 … 𝑀𝑡. An initial chaining

value is set for the hash function, publicly known initialization vector, IV, and a process is

repeated t times:

𝐻0 = 𝐼𝑉 ∈ {0,1}𝑚𝑐

𝐻𝑖 = ℎ(𝐻𝑖−1, 𝑀𝑖), 𝑖 = 1, 2, . . , 𝑡

The final 𝐻𝑡 is outputted as the hash value, i.e. 𝐻(𝑀) = 𝐻𝑡.

If the compression function is collision resistant then the hash function itself is colli-

sion resistant, so the collision resistance is preserved. Also, the pre-image resistance and

second pre-image resistance of the compression function are preserved [22, 23].

4. Sponge construction

The sponge construction is a mode of operation, based on a fixed-length permuta-

tion (or transformation) f, a padding rule and a parameter bitrate r, which builds a function

mapping variable-length input to variable-length output [24]. The permutation f operates on

a fixed number of bits, the width b. The value c = b − r is called the capacity [25]. This con-

struction is used for building hash functions and stream ciphers. When it is used as a hash

function, called SHA-2 Replacement Mode, the sponge function receives a variable-length

input and produces a fixed-length output (SHA-3 224/256/384/512). If a sponge function is

used as a stream cipher, called Variable-length Output Mode, it receives a fixed-length input

and produces a variable-length output [26]. Also, the sponge functions are used for generat-

ing pseudo-random bits. A sponge construction can be expressed as a random permutation,

(12)

(13)

Quantitative Methods Inquires

53

where the construction is called a P-sponge (random sponge), or random function, where

the construction is called a T-sponge [27]. Before the sponge construction phase is per-

formed a pre-processing phase where all the bits of the state are initialized to zero, the mes-

sage is padded to a multiple of r and cut into block of r bits.

Figure 2. The sponge construction (Source: [24], p.13)

The construction consists of two phases: the absorbing phase and the squeezing

phase.

 In the absorbing phase the r-bit input message blocks are XOR-ed and overwrit-

ten to the state, the f is applied to this state. After all blocks are processed, sec-

ond phase is applied.

 In the squeezing phase a part of the state is returned as output blocks and f is

applied to the state. The process is repeated in the same manner until the num-

ber of the chosen blocks by the user is achieved.

The difference between the compression functions of MD construction and the func-

tions from sponge construction is that a function used in sponge construction maps 1 bit

input into 1 bit output. When f is expressed as a random permutation the lower bound for

the complexity of a collision is 𝑚𝑖𝑛(2𝑛/2, 2𝑐/2) and of a pre-image and second pre-image is

𝑚𝑖𝑛(2𝑛, 2𝑐/2), where n is the hash size. If c ≥ 2n and f is a random function, then the sponge

construction is differentiable from a random oracle, the strength against signature forgery is

increased from 2𝑛/2
 to 2𝑛

. More about theory of sponge constructions and their security

properties are provided in [24].

5. Keccak hash function

Keccak, became the new SHA-3 standard, is a family of sponge functions. It can be

used in two principle modes:

- SHA-2 Replacement Mode – SHA-3 produces a fixed-length output of 224, 256,

384 or 512 bits

- Variable-length Output Mode – SHA-3 can generate arbitrarily many output bits,

so it can be used as a stream cipher or pseudorandom bit generator.

In the pre-processing phase the message m is padded as follows:

𝑝𝑎𝑑(𝑚) = 𝑚 ∥ 𝑃10∗1, where P is the bit string representation of the message m, fol-

lowed by a 1, then by a smallest number of 0s and then again a 1, so that

𝑙𝑒𝑛(𝑃10∗1) 𝑚𝑜𝑑 𝑟 ≡ 0.

In the case of SHA-3, the width of the state, b, is:

𝑏 = 𝑟 + 𝑐 = 5 ∙ 5 ∙ 2𝑙 , 𝑙 = 0,1, … ,6, so 𝑏 ∈ {25, 50, 100, 200, 400, 800, 1600}

Quantitative Methods Inquires

54

The values b = 25 and b = 50 are not used in practice. For SHA-3 a state of b =

1600 bits is used and 𝑟 ∈ {1088, 1344}. The parameters of SHA-3 are represented in bits, in

Table 2:

Table 2. The parameters of SHA-3

b

(state)

r c

security

level

hash

output

1600

1600

1600

1600

1344

1344

1088

1088

256

256

512

512

128

128

256

256

224

256

384

512

5.1 The Keccak-f permutation

Keccak-f[b] is a permutation over 𝑍2
𝑏
. The state (figure-3) consists of a 5 × 5 array of

64-bit words, a three-dimensional array of elements of GF(2), a[5][5][w], where 𝑤 = 2𝑙
. An

element is denoted as a[x][y][z], 𝑥, 𝑦 ∈ 𝑍5, 𝑧 ∈ 𝑍𝑤. The string representation of the state is

denoted as s and its bits are indexed from 0 to b-1.

Figure 3. The state of Keccak where each small cube represents one bit (Source: [25], p.11)

The mapping between the bits of a and those s is:

𝑠[𝑤(5𝑦 + 𝑥) + 𝑧] = 𝑎[𝑥][𝑦][𝑧]

The Keccak-f[b] function consists of 𝑛𝑟 = 12 + 2𝑙 rounds, where each round consists

of b bits.

Table 3. Number of rounds within Keccak-f (for SHA-3: b=1600, 𝑛𝑟 = 24)

state width b number of rounds 𝐧𝐫

25

50

100

200

400

800

1600

12

14

16

18

20

22

24

Each round consists of five sub-rounds, denoted by Greek letters:

𝜃(𝑡ℎ𝑒𝑡𝑎), 𝜌(𝑟ℎ𝑜), 𝜋(𝑝𝑖), 𝜒(𝑐ℎ𝑖) 𝑎𝑛𝑑 𝜄(𝑖𝑜𝑡𝑎) [25], [28].

(14)

Quantitative Methods Inquires

55

𝜃(𝑎):

 𝑐[𝑥] = 𝑎[𝑥, 0] ⊕ 𝑎[𝑥, 1] ⊕ 𝑎[𝑥, 2] ⊕ 𝑎[𝑥, 3] ⊕ 𝑎[𝑥, 4], 𝑥 = 0,1,2,3,4

 𝑑[𝑥] = 𝑐[𝑥 − 1]⨁𝑟𝑜𝑡(𝑐[𝑥 + 1], 1), 𝑥 = 0,1,2,3,4

 𝑎[𝑥, 𝑦] = 𝑎[𝑥, 𝑦]⨁𝑑[𝑥], 𝑥, 𝑦 = 0,1,2,3,4

𝜌(𝑎):

 𝑎[𝑥][𝑦][𝑧] = 𝑎[𝑥][𝑦][𝑧 − (𝑡 + 1)(𝑡 + 2) ∕ 2], 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑡 < 24, (
0 1
2 3

)
𝑡

(
1
0

) = (
𝑥
𝑦)

 𝜋(𝑎):

 𝑎[𝑥][𝑦] = 𝑎[𝑥′][𝑦′], 𝑤ℎ𝑒𝑟𝑒 (
𝑥
𝑦) = (

0 1
2 3

) (
𝑥′

𝑦′)

𝜒(𝑎):

 𝑎[𝑥] = 𝑎[𝑥]⨁(𝑎[𝑥 + 1]⨁1) ∧ 𝑎[𝑥 + 2]

𝜄(𝑎):

 𝑎[0,0] = 𝑎[0,0]⨁𝑅𝐶[𝑖𝑟], where 𝑅𝐶[𝑖𝑟] - round constants, 0 ≤ 𝑖𝑟 ≤ 𝑛𝑟 − 1

5.2 Keccak vs. SHA-2

After collision attacks against MD5 and SHA-0 were demonstrated by Wang in 2004

and theoretical attacks against SHA-1 were proved to exist serious doubts that these will pose

a practical threat against SHA-2 arose. NIST decided to simultaneously use two standards:

SHA-2 and SHA-3. The SHA-3 functions are alternatives to the SHA-2 functions. These two

standards use different design principles: SHA-2 uses MD principle and Keccak uses Sponge

construction. The security strengths, performances and a various details regarding construction

of the functions SHA-1, SHA-2 and SHA-3 are summarized in Table 4.

Table 4. Comparison of SHA functions (Source: [28, 29])

Function

Output

Size

(bits)

Internal

State

size

(bits)

Block

size

(bits)

Max mes-

sage

size(bits)

Rounds

Example

Perfor-

mance

(MiB/s)[

29]

Security Strengths in Bits

Collision Preimage
2

nd

Preimage

SHA-1 160
160

(5x32)
512 264 − 1 80 192 <80 162 160-L(M)

SHA-224 224 256

(8x32)
512 264 − 1 64 139

112 224
min(224,

256-L(M))

SHA-256 256 128 256 256-L(M)

SHA-384 384

512

(8x64)
1024 2128 − 1 80 154

192 384 384

SHA-512 512 256 512 512-L(M)

SHA-

512/224
224 112 224 224

SHA-

512/256
256 128 256 256

SHA3-224 224

1600

(5x5x64)

1152

Unlimited 24 -

112 224 224

SHA3-256 256 1088 128 256 256

SHA3-384 384 832 192 384 384

SHA3-512 512 576 256 512 512

SHAKE12

8
d 1344

min(d/2,

128)

≥min(d,

128)

min(d,

128)

SHAKE25

6
d 1088

min(d/2,

256)

≥min(d,

256)

min(d,

256)

Keccak, as hash function, provides 224, 256, 384 and 512 bit output sizes as well

as SHA-2. Also, Keccak can be used as a stream cipher or pseudorandom bit generator, so it

(15)

Quantitative Methods Inquires

56

supports variable output length and plays well with HMAC and KDFs. Both, SHA-2 and SHA-

3, support N/2 bit collision resistance, N preimage resistance. SHA-3, SHA-384, SHA-

512/224 and SHA-512/256 support N bit second preimage resistance, while SHA-256 and

SHA-512 support N-L(M) second preimage resistance, where N is the output size in bits and

L(M) is a function defined as [𝑙𝑜𝑔2(𝑙𝑒𝑛(𝑀) ∕ 𝐵)], with B - the block length of the function.

Keccak is very hardware friendly and is better suited for embedded applications that are

power or cost constrained, but is slower than SHA-2 in software area, it overall has a good

performance, fairly high quality, in-depth analysis [31].

Many performance comparisons of the SHA-3 finalists and SHA-2 can be found at [20].

5.3 Security of Keccak

The SHA-3 hash functions were designed to resist collision, pre-image, second

preimage or length-extension attacks, resistance which should be equal or exceeds the re-

sistance that the corresponding SHA-2 functions provide [28]. More about the theory of

sponge construction and their security properties can be found at [24], [30]. The security of

Keccak has been thoroughly researched by a number of cryptanalysts [20].

Aumasson and Khovratovich provided two possible distinguishers on reduced-

round Keccak-f[1600]. First, they detected non-ideal behavior in the algebraic description of

the permutation applying cube-testers. Second, the authors tried to solve the constrained-

input constrained-output (CICO) problem using automated algebraic techniques [32, 33].

Aumasson and Meier presented zero-sum distinguishers. This distinguisher was ap-

plied to the inner permutation of the hash function of Keccak and succeeded up to 16

rounds [33, 34].

Boura and Canteaut extended the zero-sum distinguisher of Aumasson and Meier to

18 rounds by analyzing the Walsh spectrum of the non-linear part and bounding the degree

of the rounds more tightly [33], [35].

Boura and Canteaut extended their zero-sum distinguishers to 20 rounds [33], [36].

Morawiecki and Srebrny used SAT-solver techniques to find preimages for three

rounds of Keccak, with 40 unknown message bits [33], [37].

Various research papers regarding the security analysis of Keccak can be found at [33].

6 Conclusions

A general overview regarding SHA family functions was presented. A brief design of

SHA-2 and Keccak algorithms was described. Many cryptographic attacks against MD5 and SHA-

0 were demonstrated by cryptanalysts and these functions were finally broken. Wang extended a

theoretical attack against SHA-1. After these attacks, NIST opened a new competition for the

next secure hash algorithm, named SHA-3. Also, NIST decided to simultaneously use two stand-

ards: SHA-2 and SHA-3. Five finalists in this competition are BLAKE, Grøstl, JH, Keccak and

Skein. Keccak was announced as the winner. SHA-2 and Keccak are designed completely differ-

ently: SHA-2 uses MD construction and Davies-Meyer compression function, while Keccak is

based on the Sponge construction. If an attack could work on SHA-2, the same attack would not

work on SHA-3. Both functions support the same hash lengths and Keccak can be used as a

stream cipher or pseudorandom bit generator because it supports variable output length. Also,

Keccak has higher performance in hardware implementations than SHA-2. Various comparisons

regarding construction, performance and security strength were summarized.

Quantitative Methods Inquires

57

References

1. Announcing Request for Candidate Algorithm Nominations for a New Cryptographic

Hash Algorithm (SHA-3) Family, Federal Register, Vol. 72, No. 212, 62212,

http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf, Friday,

November 2, 2007

2. Aumasson, J.P., Khovratovich, D., First Analysis of Keccak, comment on the NIST Hash

Competition, https://131002.net/data/papers/AK09.pdf, 2009

3. Aumasson, J.P., Meier, W., Zero-sum distinguishers for reduced Keccak-f and for

the core functions of Luffa and Hamsi, CHES 2009 rump session,

https://131002.net/data/papers/AM09.pdf, 2009

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Cryptographic sponge functions,

version 0.1, http://sponge.noekeon.org/CSF-0.1.pdf, January 2011

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., The KECCAK reference, version

3.0, http://keccak.noekeon.org/Keccak-reference-3.0.pdf, January 2011

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., On the security of the keyed

sponge construction, Symmetric Key Encryption Workshop,

http://sponge.noekeon.org/SpongeKeyed.pdf, February 2011

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., The Keccak sponge function family,

Third-party cryptanalysis, http://keccak.noekeon.org/third_party.html, 2012

8. Boer, B., Bosselaers, A., An attack on the last two rounds of MD4, Advances in Cryptology

– Crypto’91, LNCS, vol. 576, Springer, Berlin Heidelberg, 1992, pp 194-203

9. Boura, C., Canteaut, A., A zero-sum property for the Keccak-f permutation with 18

rounds, comment on the NIST Hash Competition,

https://www.rocq.inria.fr/secret/Anne.Canteaut/Publications/zero_sum.pdf, 2010

10. Boura, C., Canteaut, A., Zero-Sum Distinguishers for Iterated Permutations and

Application to Keccak-f and Hamsi-256, Selected Areas in Cryptography,

LNCS, vol. 6544, Springer, Berlin Heidelberg, 2011, pp 1-17

11. Burr, B.: National Institute of Standards and Technology (NIST), SHA3 WHERE WE’VE

BEEN WHERE WE’RE GOING, http://csrc.nist.gov/groups/ST/hash/sha-

3/documents/burr_dimacs2013_presentation.pdf, 2013

12. Chabaud, F., Joux, A., Differential collisions in SHA-0, Advances in Cryptology –

Crypto’98, LNCS, vol. 1462, Springer, Berlin Heidelberg, 1998, pp 56-71

13. Damgård, I., A Design Principle for Hash Functions, Advances in Cryptology —

CRYPTO’ 89 Proceedings, LNCS, vol. 435, Springer, Berlin Heidelberg, 1990,

pp 416-427.

14. De Cannière, C., Rechberger, C., Finding SHA-1 Characteristics: General Results

and Applications, Advances in Cryptology – ASIACRYPT 2006, LNCS, vol.

4284, Springer, Berlin Heidelberg, 2006, pp 1-20.

15. Dobbertin, H., Cryptanalysis of MD4, Journal of Cryptology, LNCS, vol. 11, issue 4,

Springer, Berlin Heidelberg, 1998, pp 253-271

16. Dobbertin, H., Bosselaers, A. and Preneel, B., The hash function RIPEMD-160,

http://homes.esat.kuleuven.be/~bosselae/ripemd160.html, February 2012

17. Gauravaram, P., Millan, W., Dawson, E., Viswanathan, K., Constructing Secure Hash

Functions by Enhancing Merkle-Damgård Construction, LNCS, vol. 4058,

Springer, Berlin Heidelberg, 2006, pp 407-420

Quantitative Methods Inquires

58

18. Grechnikov, E.A., Collisions for 72-step and 73-step SHA-1: Improvements in the

Method of Characteristics, Cryptology ePrint Archive: Report 2010/413, 2010

19. Madhuravani, B., Murthy, D.S.R., Cryptographic Hash Functions: SHA Family, Inter-

national Journal of Innovative Technology and Exploring Engineering (IJITEE),

vol. 2, issue 4, Springer, Berlin Heidelberg, 2013

20. Manuel, S., Classification and generation of disturbance vectors for collision at-

tacks against SHA-1, Designs, Codes and Cryptography, vol. 59, issue 1-3,

Springer, US, 2011, pp 247-263.

21. Matusiewicz, K., Analysis of Modern Dedicated Cryptographic Hash Functions,

PhD thesis, Macquarie University, 2007.

22. McDonald, C., Hawkes, P., Pieprzyk, J., Constructing Nonlinear Differentials in

SHA-1, Cryptology ePrint Archive: Report 2009/259, 2009

23. Mendel, F., Nad, T., Scherz, S., Schläffer, M., Differential Attacks on Reduced

RIPEMD-160, LNCS, vol. 7483, Springer, Berlin Heidelberg, 2012, pp 23-38

24. Merkle, R., One Way Hash Functions and DES, Advances in Cryptology - CRYPTO’ 89

Proceedings, LNCS, vol. 435, Springer, Berlin Heidelberg, 1990, pp 428-446.

25. Morawiecki, P., Srebrny, M., A SAT-based preimage analysis of reduced Keccak

hash functions, Cryptology ePrint Archive: Report 2010/285, (2010)

26. National Institute of Standards and Technology (NIST), FIPS 180-4,

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf, 2012.

27. National Institute of Standards and Technology (NIST), Third Round Report of the

SHA-3 Cryptographic Hash Algorithm Competition, NISTIR 7896,

http://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7896.pdf, 2012

28. National Institute of Standards and Technology (NIST), SHA-3 Standard: Permutation-

Based Hash and Extendable-Output Functions, DRAFT FIPS PUB 202,

http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf, 2014

29. Paar, C., Pelzl, J., SHA-3 and The Hash Function Keccak, Springer,

http://professor.unisinos.br/linds/teoinfo/Keccak.pdf, 2010

30. Rivest, R.L., The MD4 message digest algorithm, Advances in Cryptology - Cryp-

to’90, Springer-Verlag, 1991, pp 303-311

31. Rivest, R.L., The MD5 message-digest algorithm, Request for Comments (RFC 1320),

Internet Activities Board, Internet Privacy Task Force, 1992.

32. Stevens, M., Counter-Cryptanalysis, Advances in Cryptology – CRYPTO 2013, LNCS,

vol. 8042, Springer, Berlin Heidelberg, 2013, pp 129-146.

33. Wang, G., Wang, S., Preimage Attack on Hash Function RIPEMD, LNCS, vol. 5451,

Springer, Berlin Heidelberg, 2009, pp 274-284

34. Wang, X., Yu, H., How to Break MD5 and Other Hash Functions, Advances in Cryp-

tology – EUROCRYPT 2005, LNCS, vol. 3494, Springer, Berlin Heidelberg,

2005, pp 19-35

35. Wang, X., Yin, Y.L., Yu, H., Finding Collisions in the Full SHA-1, Shoup, V.(ed.)

CRYPTO 2005, LNCS, vol. 3621, Springer, Berlin Heidelberg, 2005, pp 17-36.

36. Wang, X., Yao, A., Yao, F., Cryptanalysis of SHA-1, Cryptographic Hash Workshop

hosted, NIST, October 2005

37. http://en.wikipedia.org/wiki/SHA-3

